
la Lettre GUTenberg, octobre 2024 1

AORDRE LEXICOGRAPHIQUEENFRANÇAIS

ALGORITHMEUCA, TRID’INDEX

Résumé

Doit-on classer côte avant ou après coté ?
Existe-t-il un algorithme informatique permettant de classer les mots et locutions
françaises dans le même ordre que les dictionnaires classiques?
Quel programme choisir pour créer un index en LATEX?
C’est à ces questions qu’essaie de répondre ce court mémoire.

Ordre lexicographique en français
L’ordre de classement des mots et locutions dans un dictionnaire français semble naturel :
on triera par exemple sans hésitation 1 acompte < Açores < à-côté < à-coup < a priori.

L’ordre alphabétique est connu dans ses grandes lignes mais les détails le sont moins.
Rappelons quelques règles de base :
— les caractères accentués (à, é, ô) et les diacritiques (ç) se classent avec leur lettre de base

(a, e, c respectivement), en fait la lettre de base précède immédiatement sa variante
accentuée, ainsi cote < coté et côte < côté ;

— l’ordre des accents en français est identique quelle que soit la lettre de base, nous le
donnons uniquement pour le e2 : e < é < è < ê < ë ;

— les ligatures æ et œ sont traitées comme deux lettres ae et oe :
exact < ex æquo < exagération
coefficient < cœur < coexistence

— laminuscule précède la majuscule (a < A) ;
— enfin les tirets (et avec eux les espaces, apostrophes, etc.) sont ignorés.

Une chose est claire : un tri binaire comparant les codes des caractères est totalement exclu
quel que soit le codage envisagé (iso-latin-9, unicode, etc.). Rappelons en effet que le codage
ASCII, base de tous les autres, place toutes les capitales avant les minuscules, on aurait donc
Zoo avant abat…Demême, les codes des lettres de base sont inférieurs à 127 tandis ceux des
caractères accentués sont supérieurs à 128, ce qui conduirait à placer coton entre cote et coté !

Certains choix sont moins évidents, notamment le classement en présence d’accents mul-
tiples ; ainsi, les dictionnaires classiques (Larousse, Littré, Robert,…) ont toujours classé :
cote < côte < coté < côté
élève < élevé
gène < gêne < gêné
pèche < pêche < péché < pêché
relève < relevé

Les raisons linguistiques ayant conduit à ces choix sont disparates et pas toujours écrites,
mais il semble y avoir un consensus implicite : on ne note pas de divergences entre Larousse,
Littré et Robert par exemple.

Une règle simple aide à départager les substantifs homographes 3 : le féminin précède le
masculin, ainsi (la) relève doit être classée avant (le) relevé, (la) pêche avant (le) péché4.

1. Dans tout ce document le signe < s’entend au sens de la relation d’ordre lexicographique, a < b signifiant a
vient avant b.

2. Car c’est la lettre qui admet le plus de variantes accentuées en français.
3. Mots identiques aux accents et diacritiques près, exemple cote, côte, coté, côté.
4. Noter que cette règlene s’appliqueque si l’ordredes accents rappelé ci-dessousn’a paspermis le classement,

ainsi (le) gène précède (la) gêne car è < ê.



2 la Lettre GUTenberg, octobre 2024

Trouver un algorithme aboutissant automatiquement au classement traditionnel des mots
et locutions françaises n’a pas été simple. Le problème est maintenant résolu grâce à l’algo-
rithme UCA et aux contributions d’une équipe canadienne autour d’Alain LaBonté.

De nos jours, les recherches dans les bases de données imposent que s’applique un ordre
unique connu de tous les utilisateurs. Un classement reposant sur un algorithme est un gage
de stabilité et de reproductibilité.Mais le classement algorithmique se doit d’être compatible
avec le classement historique des dictionnaires classiques de la langue concernée.

Notons que l’ordre lexicographique est très dépendant de la langue : un francophone s’attend
à trouver œdème sous la lettre O tandis qu’un Suédois cherchera le mot öde (désert) à la lettre
Ö après le Z. Les Allemands ont deux modes de classement, DIN 5007-1 (cas général : ä traité
comme a) et DIN 5007-2 (listes de noms propres : ä traité comme ae).

Une dernière précision : il est d’usage de classer les locutions étrangères comme celles de la
langue principale du document. L’index d’un document en français placera donc föhn entre
fœtus et foi et le mot suédois öde à la lettreO.

Principes de l’algorithme UCA5

Un tri à trois niveaux

Vouloir classer ensemble les homographes amène à proposer un premier niveau de tri où
tous les accents sont supprimés. L’usage étant de ne pas tenir compte (dans un premier
temps) de la casse, on négligera également celle-ci au premier niveau.

À l’issue de cette première phase, les homographes sont classés ex æquo : ils pourront être
départagés lors d’une seconde phase de tri. Une troisième phase permettra de départager
majuscules et minuscules : à et À sont classés ex æquo aux niveaux un et deux.

L’algorithme UCA reprend ce principe. Nous le décrivons uniquement pour les langues
latines6. L’idée de base est d’associer à chaque chaîne de caractères une clé de tri 7 qui pourra
ensuite être traitée numériquement.

À chaque caractère sont associés trois « poids » (primaire, secondaire, tertiaire) qui déter-
minent l’ordre de classement aux niveaux 1, 2 et 3 respectivement.

Le poids primaire est pris en compte au premier niveau de tri (sans accents ni diacritiques).
Ainsi un a ou un à auront le même poids primaire, plus faible qu’un b. La minuscule et la
majuscule correspondante ont toujours le même poids primaire ce qui assure de les classer
ex æquo au premier niveau.

La liste de ces « poids » est donnée dans une table appelée DUCET.

La prise en compte des poids se fait dans le sens de la lecture, donc de gauche à droite en
français, et la comparaison s’arrête à la première différence trouvée.

Prenons un exemple concret : comparons les chaînes de caractères Cote, côte, coté et côté. La
table DUCET donne les « poids » suivants8 (en base 10) :

5. L’algorithme UCA est décrit en détail dans [1].
6. UCA est suffisamment flexible pour traiter toutes les langues alphabétiques ou non, arabe, chinois, langues

indiennes comprises.
7. Les utilisateurs avisés de makeindex ont recours à une telle clé lorsqu’ils veulent classer correctement un

mot comme été : ils codent \index{ete@été} pour associer la clé ete aumot été.
8. En réalité, les lettres accentuées sont prises en compte comme deux caractères successifs (ou plus), la

lettre de base suivie de son (ou ses) accents(s). Ainsi dans la table DUCET, l’accent aigu a pour poids (0,39,2), le
grave (0,37,2). Sachant que les poids nuls sont ignorés à chaque niveau de tri, la présentation simplifiée que
nous donnons ici est correcte,mais uniquement pour les langues n’ayant aucun caractère qui porte plusieurs



la Lettre GUTenberg, octobre 2024 3

Primaire Secondaire Tertiaire
C 7617 32 8
c 7617 32 2
o 7972 32 2
ô 7972 39 2
t 8157 32 2
e 7665 32 2
é 7665 37 2

On constate que les poids primaires sont identiques pour C et c, ainsi que pour les voyelles
avec ou sans accent (o et ô, e et é). Les poids des c, e, o et t sont bien en ordre croissant. Au
niveau primaire, les quatre chaînes ont la même clé de tri (7617,7972,8157,7665) : elles seront
donc classées ex æquo.

En revanche, un mot comme coopérer serait classé avant elles au niveau primaire (au bout de
seulement trois comparaisons), le second o ayant un poids inférieur au t.

Autre exemple. Les deux premières lettres des mots ça et car ont le même poids primaire :
c’est la longueur qui fait la différence dès le premier niveau, ça < car, parce que l’absence de
troisième caractère dans ça est interprétée comme un caractère vide de poids 0.

Au niveau secondaire, le mot Cote sera évidemment classé en premier, sa clé de tri étant
(32,32,32,32). Comparons ensuite côte et coté : en lisant de gauche à droite, le o a un poids
inférieur à celui de ô, donc coté devrait être classé avant côte ; malheureusement ce classement
contredirait l’usage…Une équipe canadienne, autour d’Alain LaBonté, a proposé d’inverser
l’ordre de lecture pour classer les accents en français (donc uniquement au niveau deux). De
fait, le résultat est alors conforme au classement traditionnel des dictionnaires français…
pas seulement sur cet exemple! Alain Rey lui-même a donné acte à Alain Labonté que sa
méthode produisait un classement en tout point conforme à l’usage en français.

Vérifions-le sur notre exemple. Si on prend en compte les accents de droite à gauche, c.-à-d.
à partir de la fin dumot en remontant :

— dès la première comparaison, les é finaux de coté et côté (poids 37) conduisent à les
placer après côte (poids 32) ;

— il reste à comparer côté et coté : la troisième comparaison impose coté < côté (32 contre
39).

Le classement final est donc Cote < côte < coté < côté.

Dans la table DUCET, le poids secondaire des accents est propre à l’accent et indépendant de
la lettre qui le porte. Il conduit au classement suivant qui convient parfaitement au français :
e < é < è < ê < ë (poids respectifs 32, 36, 37, 39, 43).

Le consortiumUnicode, garant de l’algorithme UCA, a officiellement entériné la possibilité
d’inverser l’ordre de lecture pour chaque niveau. À ce jour, cette possibilité n’est utilisée
qu’au niveau deux et uniquement pour le français.

Le troisième niveau permet par exemple de comparer Cote et cote. Les capitales ont un poids
tertiaire de 8 contre 2 pour les minuscules, ce qui place Cote après cote, c’est effectivement
l’ordre adopté en français. Une option permet d’inverser cet ordre pour placer les majuscules
avant les minuscules, comme c’est l’usage en allemand par exemple.

accents. C’est le cas du français, mais pas du vietnamien par exemple.



4 la Lettre GUTenberg, octobre 2024

Un quatrième niveau (optionnel)

Il reste à préciser comment classer les chaînes de caractères comportant des espaces, traits
d’union, apostrophes, etc.

Dans l’algorithme UCA de base à trois niveaux, ces caractères sont traités de la même façon
que les lettres, en fonction de leurs poids dans la table DUCET :

code Primaire Secondaire Tertiaire
<espace > U+0020 521 32 2
<tiret -> U+002D 525 32 2
<apost. '> U+0027 785 32 2
<apost. ’> U+2019 787 32 2

Leur poids primaire est nettement inférieur à celui des autres caractères, ainsi en anglais le
tri UCA à trois niveaux classera stand < stand by < stand for < stand up < standard, l’espace ayant
un poids primaire inférieur à celui du a. Le résultat est satisfaisant dans ce cas mais l’est
moins si on considère les locutions death, de-escalate et de facto, qui seront classées de facto <
de-escalate < death, l’ordre attendu étant plutôt death < de-escalate < de facto.

L’algorithme UCA propose plusieurs options permettant d’ignorer les caractères non alpha-
bétiques (espaces, tirets et apostrophes ainsi que d’autres) aux trois premiers niveaux de tri.
Un quatrième niveau de tri est alors nécessaire pour départager tire-bouchon et tirebouchon
par exemple.

La table DUCET donne pour chaque caractère, en plus des trois poids mentionnés ci-dessus,
une quatrième valeur binaire dite de « type » : soit « type lettre », soit « type autre ». Lors des
trois premiers niveaux de tri, les caractères de type « lettre » sont toujours pris en compte,
tandis que ceux de type « autre », aussi appelés « à poids variable » (Variable weight), peuvent
être ignorés : en activant l’une des options [Alternate Shifted] ou [Alternate Shift-

Trimmed], les caractères de type « autre » voient leurs poids annulés aux niveaux un à
trois9 et sont crédités au niveau quatre d’un poids égal à leur ancien poids primaire de
base. Ainsi, si l’une des options[Alternate Shifted] ou [Alternate Shift-Trimmed]

est activée, le tiret U+002D est pris en compte avec les poids (0, 0, 0, 525), l’espace avec
(0, 0, 0, 521), etc. L’option [Alternate Shift-Trimmed] attribue, au niveau quatre, un
poidsmaximal aux caractères de type « lettre » (0xFFFF en hexadécimal soit 65535), tandis
que [Alternate Shifted] leur attribue un poids minimal (inférieur à celui de tous les
caractères de type « autre »).

En pratique, l’option [Alternate Shift-Trimmed] classe au quatrième niveau 10 les ca-
ractères de type « lettre » avant (coop < co-op, LaFayette < La Fayette), tandis que l’option
[Alternate Shifted] les place après les espaces, tirets, apostrophes et autres (co-op < coop,
La Fayette < LaFayette).

Exemples :

— Le tri de base donne :

— ça et là < cæsium ;
— l’âme < lame < lamé ;
— tire-clou < tire-d’aile < tire-dent < tirebouchon < tirefond.

— Les options [Alternate Shifted] et [Alternate Shift-Trimmed] classent
toutes deux :

— cæsium < ça et là < cafard ;

9. Rappel : les poids nuls sont toujours supprimés de la clé de tri.
10. Il est bien rare qu’il faille aller jusque-là pour départager deux chaînes de caractères!



la Lettre GUTenberg, octobre 2024 5

— lame < l’âme < lamé 11 ;
— tirebouchon < tire-clou < tire-d’aile < tire-dent < tirefond.

Les options [Alternate Shift-Trimmed] ou, à défaut, [Alternate Shifted], sont re-
commandées pour le français.

Adaptations de l’algorithme UCA aux locales

Nous avons vu que les poids attribués par la table DUCET conviennent au traitement du
français. Pour d’autres langues, il peut être nécessaire d’adapter cette table en modifiant les
poids relatifs de certains caractères. Cette opération s’appelle tailoring en anglais, voir [1]
section 8, ou [2] section 12.6.3.

La syntaxe à utiliser est assez simple : pour définir un ordre relatif pour les poids primaires
on utilise le signe <, << pour les poids secondaires et <<< pour les poids tertiaires.Un locuteur
d’une langue scandinave désirant classer dans l’ordreÆ,Ø et Å après Z imposera la règle
tailoring("&Z<Æ<Ø<Å"). En espagnol, pour classer llano après luz, il suffit d’ajouter la
règle tailoring("&l<ll<<<lL<<<LL").

Mise enœuvre informatique : exemple de lua-uca

L’algorithme UCA a été codé d’abord en Java et plus récemment en Lua par Michal Hoftich,
lua-uca [3]. Le tri pour le français fonctionne bien depuis la version 0.1d 12 sauf pour les
locutions et mots composés (« ça et là », « tire-bouchon »), qui nécessitent le recours au
quatrième niveau de tri de l’algorithme UCA. En effet, la version Lua deMichal Hoftich se
limite aux trois premiers niveaux.

Le document [4] propose une liste de locutions francophones et indique l’ordre à obtenir.
C’est un excellent test de torture pour les programmes de tri, les exemples qui suivent sont
basés sur cette liste.

Voici un fichier sort-list-fr.lua à compiler avec LuaTEX, qui utilise l’algorithme de lua-
uca pour trier la liste de mots contenus dans la table t. Cette liste est construite à partir de la
liste canadienne (locutions et mots composés ou étrangers exclus), avec quelques ajouts
personnels.

Exemple 1

 #!/usr/bin/env texlua



 local t = {"CÔTÉ", "cote", "Côté", "COTÉ", "côte", "COTE",

 "côté", "Coté", "coté", "Cote", "CÔTE", "Côte",

 "lésé", "péché", "bohème", "gêné", "pêche",

 "cæsium", "pêcher", "révèle", "pécher", "révélé",

 "Bohême", "relève", "PÉCHÉ", "maçon", "relevé",

 "Élève", "gêne", "élevé", "MÂCON", "gène",

 "Bohémien", "caennais", "lèse", "coexistence",

 "cœur", "coefficient", "cafard", "CŒUR", "CÆSIUM"}



 kpse.set_program_name "luatex"

 local ducet = require "lua-uca.lua-uca-ducet"

11. Avec lecture des accents à rebours.
12. NDLR : Cette version étant récente, vous devrez probablement mettre à jour manuellement le package

lua-uca pour en bénéficier (notamment si vous souhaitez tester l’exemple ci-dessous), en utilisant par exemple
tlmgr.

https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca


6 la Lettre GUTenberg, octobre 2024

 local collator = require "lua-uca.lua-uca-collator"

 local languages = require "lua-uca.lua-uca-languages"



 local collator_obj = collator.new(ducet)

 -- load French rules

 collator_obj = languages.fr_backward_accents(collator_obj)



 table.sort(t, function(a,b)

 return collator_obj:compare_strings(a,b)

 end)



 for _, v in ipairs(t) do

 print(v .. ",")

 end

L’exécution donne ceci :

 luatex "sort-list-fr.lua"

bohème, Bohême, Bohémien, caennais, cæsium, CÆSIUM,

cafard, coefficient, cœur, CŒUR, coexistence, cote,

Cote, COTE, côte, Côte, CÔTE, coté, Coté, COTÉ,

côté, Côté, CÔTÉ, Élève, élevé, gène, gêne, gêné,

lèse, lésé, MÂCON, maçon, pêche, péché, PÉCHÉ,

pécher, pêcher, relève, relevé, révèle, révélé,

Le résultat est un sans-faute.

Un second test porte sur le classement des locutions et mots composés. Le quatrième niveau
de tri n’étant pas implémenté dans lua-uca, le résultat n’est pas fameux. On reprend le même
script avec la table suivante :

Exemple 2

 local t = { "vice-président", "Ça", "vice versa", "C.A.F.",

 "tire-dent", "L'Haÿ-les-Roses", "tire-clou",

 "caennais", "co-op", "lame", "Mc Arthur","colon",

 "tirefond", "l'âme", "Canon", "McArthur", "lamé",

 "Mc Mahon", "tire-d'aile", "çà et là", "tirebouchon",

 "MacArthur", "lésé", "maçon", "cæsium", "coop", }

Avec cette nouvelle table la compilation donne :

 luatex "sort-list-fr.lua"

C.A.F., Ça, çà et là, caennais, cæsium, Canon,

co-op, colon, coop, l'âme, L'Haÿ-les-Roses, lame, lamé, lésé,

MacArthur, maçon, Mc Arthur, Mc Mahon, McArthur,

tire-clou, tire-d’aile, tire-dent, tirebouchon, tirefond,

vice versa, vice-président,

Le bon ordre serait :

https://ctan.org/pkg/lua-uca


la Lettre GUTenberg, octobre 2024 7

 luatex "sort-list-fr.lua"

caennais, cæsium, çà et là, C.A.F., Canon, colon,

coop, co-op, lame, l'âme, lamé, lésé, L'Haÿ-les-Roses,

MacArthur, maçon, McArthur, Mc Arthur, Mc Mahon,

tirebouchon, tire-clou, tire-d’aile, tire-dent, tirefond

vice-président, vice versa,

En effet, les espaces, apostrophes, tirets et points devraient être ignorés aux trois premiers
niveaux, le quatrième niveau départageant coop et co-op ainsi queMcArthur etMcArthur.

Comparaison des programmes de création d’index pour LATEX
Le cas le plus fréquent où se manifeste le besoin de trier une liste de mots est celui de la
création d’un index.

makeindex est le programme le plus ancien, il est limité au tri des caractères ASCII, ce qui le
disqualifie pour le français, à moins de créer des clés ASCII pour les mots accentués
comme ceci : \index{ete@été}. Noter que le classement correct des mots relève et
relevé suppose la création des clés suivantes :
— \index{releve1@relève}

— et \index{releve2@relevé}

Cela implique que l’auteur connaisse parfaitement les règles de tri en français.
xindy disponible depuis une vingtaine d’année est adapté aux caractères accentués, mais il

a été conçu avant le développement d’Unicode essentiellement pour des codages 8-bits
(le é est codé en Latin1 ou en Latin9 sur un seul octet, alors qu’il est codé sur deux
octets en UTF-8). Aujourd’hui, les sources LATEX devraient tous être codés en UTF-8
(codage par défaut pour pdfLATEX et obligatoire pour LuaLATEX et X ELATEX), si bien
que le recours au programme xindy n’est plus pertinent. De plus, xindy ne respecte
pas complètement l’ordre lexicographique des dictionnaires français : il classe par
exemple relève (féminin) après relevé (masculin).

xindex[5] est écrit en Lua et adapté au codage UTF-8; depuis la version 0.60 (mai 2024),
le tri est fait par lua-uca (option par défaut) et donne des résultats satisfaisants en
français, sauf bien sûr pour les mots composés comme indiqué ci-dessus.

upmendex [6] est un autre programme adapté au codage UTF-8, il est écrit en C, utilise
la bibliothèque UCA d’origine et non le portage en Lua de Michal Hoftig. C’est le
programme de tri d’index qui donne actuellement les meilleurs résultats en français.

Voyonsmaintenant comment utiliser xindex et upmendex sur un exemple compact mais
exigeant en termes de tri. Le source LATEX est le suivant :

Exemple 3

 \documentclass[french]{article}

 \usepackage{babel}

 % Pour xindex

 \usepackage{xindex}\makeindex

 % Pour upmendex

 %\usepackage{makeidx}\makeindex



 \newcommand*{\IND}[1]{\index{#1}#1\par}

https://ctan.org/pkg/lua-uca


8 la Lettre GUTenberg, octobre 2024

 \setlength{\parindent}{0pt}

 \begin{document}

 \thispagestyle{empty}



 \IND{CÔTÉ} \IND{cote} \IND{çà et là} \IND{Côté} \IND{Bohémien}

 \IND{L'Haÿ-les-Roses} \IND{côte} \IND{COTE} \IND{tire-clou}

 \IND{côté} \IND{Coté} \IND{C.A.F.} \IND{coté} \IND{l'âme}

 \IND{Cote} \IND{MacArthur} \IND{élevé} \IND{CÆSIUM} \IND{lamé}

 \IND{CÔTE} \IND{Mc Arthur} \IND{tirebouchon} \IND{Côte}

 \IND{lésé} \IND{MÂCON} \IND{co-op} \IND{péché} \IND{tirefond}

 \IND{bohème} \IND{lame} \IND{McArthur} \IND{gêné} \IND{pêche}

 \IND{cæsium} \IND{tire-dent} \IND{Mc Mahon} \IND{pêcher}

 \IND{révèle} \IND{cafard} \IND{relevé} \IND{Bohême} \IND{pécher}

 \IND{relève} \IND{PÉCHÉ} \IND{vice versa} \IND{maçon}

 \IND{coop} \IND{Élève} \IND{gêne} \IND{CŒUR} \IND{vice-président}

 \IND{gène} \IND{COTÉ} \IND{caennais} \IND{lèse} \IND{coexistence}

 \IND{cœur} \IND{coefficient} \IND{tire-d'aile \IND{révélé}



 \newpage

 \IND{coté} \IND{cœur} \IND{tire-d'aile} \IND{péché}

 \newpage

 \IND{coté} \IND{vice versa} \IND{coefficient}



 \printindex

 \end{document}

Utilisation de xindex

À l’issue d’une première compilation créant le fichier .idx, on exécute la commande :
xindex -l fr -i -c let-gut test-french

qui crée le fichier .ind.

L’option -l fr (indispensable) impose la langue française pour le tri.

L’option -i (ignore-spaces) améliore le classement de ça et là qui est correctement classé
entre CÆSIUM et cafard ; sans cette option, il serait classé en deuxième position juste après
C.A.F.. Cette option n’a aucune influence sur le classement des mots composés comme
tire-bouchon ou l’âme.

L’option -c let-gut charge le fichier de configuration xindex-letgut.lua qui influe sur
la présentation de l’index à la manière d’un fichier .ist pour makeindex ou upmendex.

Une seconde compilation produit l’index de gauche, figure 1 page 10.

Utilisation de upmendex

upmendex est (presque) totalement compatible avec makeindex, les options sont les mêmes
(à l’exception de -g qui concerne l’allemand sous makeindex et le japonais sous upmendex).
L’option -s permet de charger un fichier de style : noter que upmendex accepte plusieurs
options -s successives, et que les fichiers de style conçus pour makeindex fonctionnent à
l’identique sous upmendex.

Le choix de la langue de base pour le tri se fait dans un fichier de style .ist. En voici un
exemple adapté au français, appelons-le french.ist :



la Lettre GUTenberg, octobre 2024 9

Exemple 4

 % Règles de tri pour le français :

 icu_attributes "french-collation:on strength:tertiary alternate:

shifted"

Pour produire un index d’aspect semblable au précédent on ajoute le fichier de configuration
myindex.ist (syntaxe de makeindex) :

Exemple 5

 % insertion avant la lettre

 heading_prefix "{\\bfseries "

 % ajout après la lettre

 heading_suffix "\\hfil}\\nopagebreak\n"

 % activation impression lettre

 headings_flag 1



 % n° de page

 delim_0 ", "

 delim_1 ", "

 delim_2 ", "

La commande à exécuter pour produire le fichier .ind est la suivante :
upmendex -s french.ist -s myindex.ist test-french

Une description plus complète de upmendex est donnée dansTheLateXCompanion 3e éd. vol. II,
p. 364-370.

Une seconde compilation produit l’index de droite de la figure 1 page suivante.

Comparaison des deux index

xindex comme upmendex trient parfaitement les caractères accentués de notre langue,
aucune inversion n’est à déplorer dans la liste canadienne.

La différence est perceptible sur les locutions et mots composés.

— L’option -i de xindex fonctionne bien pour les locutions; les espaces étant ignorés,
ça et là est bien classé entre CÆSIUM et cafard alors que sans cette option il serait
en deuxième position juste derrière C.A.F. (le point est classé avant toute lettre). En
revanche, le classement des mots composés (contenant une apostrophe ou un tiret)
laisse à désirer : l’âme et L’Haÿ-les-Roses sont classés avant lame, de même tire-clou est
avant tirebouchon, etc. Ceci résulte de la non prise en compte du quatrième niveau de
tri dans l’implémentation lua-uca.

— upmendex donne un résultat parfaitement conforme aux attentes : C.A.F. est classé
juste avant cafard et non plus en tête de liste, et les mots commençant par tire avec ou
sans trait d’union sont dans le bon ordre.

https://ctan.org/pkg/lua-uca


10 la Lettre GUTenberg, octobre 2024

Index

B
bohème, 1
Bohême, 1
Bohémien, 1

C
C.A.F., 1
caennais, 1
cæsium, 1
CÆSIUM, 1
çà et là, 1
cafard, 1
co-op, 1
coefficient, 1, 3
cœur, 1, 2
CŒUR, 1
coexistence, 1
coop, 1
cote, 1
Cote, 1
COTE, 1
côte, 1
Côte, 1
CÔTE, 1
coté, 1-3
Coté, 1
COTÉ, 1
côté, 1
Côté, 1
CÔTÉ, 1

E
Élève, 1
élevé, 1

G
gène, 1
gêne, 1
gêné, 1

L
l’âme, 1
L’Haÿ-les-Roses, 1
lame, 1
lamé, 1
lèse, 1
lésé, 1

M
MacArthur, 1
MÂCON, 1
maçon, 1
McArthur, 1
Mc Arthur, 1
McMahon, 1

P
pêche, 1
péché, 1, 2
PÉCHÉ, 1
pécher, 1
pêcher, 1

R
relève, 1
relevé, 1
révèle, 1

T
tire-clou, 1
tire-d’aile, 2
tire-dent, 1
tirebouchon, 1
tirefond, 1

V
vice-président, 1
vice versa, 1, 3

Index

B
bohème, 1
Bohême, 1
Bohémien, 1

C
caennais, 1
cæsium, 1
CÆSIUM, 1
çà et là, 1
C.A.F., 1
cafard, 1
coefficient, 1, 3
cœur, 1, 2
CŒUR, 1
coexistence, 1
co-op, 1
coop, 1
cote, 1
Cote, 1
COTE, 1
côte, 1
Côte, 1
CÔTE, 1
coté, 1–3
Coté, 1
COTÉ, 1
côté, 1
Côté, 1
CÔTÉ, 1

E
Élève, 1
élevé, 1

G
gène, 1
gêne, 1
gêné, 1

L
lame, 1
l’âme, 1
lamé, 1
lèse, 1
lésé, 1
L’Haÿ-les-Roses, 1

M
MacArthur, 1
MÂCON, 1
maçon, 1
Mc Arthur, 1
McArthur, 1
McMahon, 1

P
pêche, 1
péché, 1, 2
PÉCHÉ, 1
pécher, 1
pêcher, 1

R
relève, 1
relevé, 1
révèle, 1

T
tirebouchon, 1
tire-clou, 1
tire-d’aile, 2
tire-dent, 1
tirefond, 1

V
vice-président, 1
vice versa, 1, 3

1

Figure 1–À gauche xindex, à droite upmendex



la Lettre GUTenberg, octobre 2024 11

Conclusion
upmendex est actuellement le plus performant des programmes de création d’index, xindex
vient juste derrière mais il est plus simple à utiliser et bien suffisant en pratique. Pour les
départager, il a fallu recourir à une liste demots vraiment sélective : qui a vraiment besoin de
classer correctement l’âme ou L’Haÿ-les-Roses dans un index? D’autre part, les traits d’union
ont tendance à disparaître depuis la réforme de 1990; quant aux abréviations, on écrit plutôt
CAF que C.A.F. pour Caisse d’allocations familiales…

La bonne nouvelle est que nous disposons enfinde deux programmes qui produisent des index
conformes à l’ordre lexicographique traditionnel des dictionnaires français, les utilisateurs
ont donc le choix : xindex ou upmendex.

Remerciements
Ayant toujours trouvé décevants les résultats obtenus pour le tri des index en français par
makeindex et xindy, j’ai découvert il y a deux ans l’existence d’un nouveau programme de
tri basé sur Unicode, lua-uca deMichal Hoftig.

Comme beaucoup, je n’avais pas d’idée précise sur le classement des mots cote, côte, coté et
côté à part ce qui en était dit dans leThe LateX Companion 2e éd., trad. française à propos de
xindy. Suite à mes questions posées sur la liste Typo, Jacques André (merci Jacques!) m’a
mis en contact avec Alain LaBonté qui a eu la gentillesse de répondre patiemment àmes
interrogations, je l’en remercie bien vivement.

Une fois connue la liste de référence établie par les Canadiens, il restait à la confronter
aux résultats produits par lua-uca. Hélas, ils n’étaient pas brillants à l’époque, lua-uca ne
proposant pas le tri à l’envers des accents,mais c’est maintenant corrigé depuis la version
0.1d. Ensuite, Herbert Voß a intégré cette version de lua-uca dans la version 0.60 de xindex.
Merci donc à Michal et Herbert!

Daniel Flipo

Références
[1] Unicode Collation Algorithm. Document officiel sur le tri Unicode. 2020. url : https:

//unicode.org/reports/tr10/.
[2] Patrick Andries.Unicode 5.0 en pratique. Dunod, 2008. isbn : 978-2-10051140-2.
[3] MichalHoftig. Package lua-uca disponible sur CTAN. 2024. url : https://github.com

/michal-h21/lua-uca/.
[4] Norme canadienne CAN/CSA Z243.4.1-98. Rechercher le fichier SGQRI004.pdf. 2006.

url : https://www.tresor.gouv.qc.ca/.
[5] Herbert Voß. Package xindex disponible sur CTAN. 2023. url : https://gitlab.com/hv

oss49/xindex.
[6] Takuji Tanaka. Package upmendex disponible sur CTAN. Doc : upmendex.man1.pdf. 2023.

url : https://github.com/t-tk/upmendex-package.
[7] FrankMittelbach et Ulrike Fischer.The LateX Companion 3e éd. Pearson Addison-

Wesley, 2023. isbn : 978-0-13-465894-0.
[8] FrankMittelbach et Michel Goossens.The LateX Companion 2e éd., trad. française.

Pearson Education France, 2005. isbn : 978-2-7440-7133-1.

https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://ctan.org/pkg/lua-uca
https://unicode.org/reports/tr10/
https://unicode.org/reports/tr10/
https://ctan.org/pkg/lua-uca
https://github.com/michal-h21/lua-uca/
https://github.com/michal-h21/lua-uca/
https://www.tresor.gouv.qc.ca/
https://ctan.org/pkg/xindex
https://gitlab.com/hvoss49/xindex
https://gitlab.com/hvoss49/xindex
https://ctan.org/pkg/upmendex
https://github.com/t-tk/upmendex-package

	Ordre lexicographique en français
	Algorithme UCA, tri d’index
	Ordre lexicographique en français
	Principes de l’algorithme UCAL’algorithme UCA est décrit en détail dans tr10.
	Un tri à trois niveaux
	Un quatrième niveau (optionnel)
	Adaptations de l’algorithme UCA aux locales
	Mise en œuvre informatique : exemple de lua-uca

	Comparaison des programmes de création d’index pour LaTeX
	Utilisation de xindex
	Utilisation de upmendex
	Comparaison des deux index

	Conclusion



