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1 Définitions et exemples

Définition 1.1 Soit (X𝑛)𝑛∈N une suite de variables aléatoires de (Ω,𝒜,P) dans
un espace E fini ou dénombrable appelé espace des états.
1) On dit que (X𝑛)𝑛∈N est une chaîne de Markov si et seulement si

P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖,X𝑛−1 = 𝑖𝑛−1,…,X1 = 𝑖1,X0 = 𝑖0) = P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖)

pour tout 𝑛 ∈N, pour tout état 𝑗 et pour toute suite d’états 𝑖0, 𝑖1,…𝑖𝑛−1, 𝑖, pour
lesquels la probabilité conditionnelle a un sens, c.-à-d. tels que

P(X𝑛 = 𝑖,X𝑛−1 = 𝑖𝑛−1,…,X1 = 𝑖1,X0 = 𝑖0) > 0.

2) Si en plus la probabilité P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖) ne dépend pas de 𝑛, c.-à-d. si

∀𝑛 ∈N, P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖) = P(X1 = 𝑗 ∣ X0 = 𝑖)

on dit que la chaîne de Markov est homogène.

La propriété deMarkov exprime que, si la valeur deX𝑛 est connue à l’instant𝑛, la
loi des variables futures (X𝑛+1, X𝑛+2 etc.) ne dépend pas du passé (les valeurs de
X𝑛−1, X𝑛−2 etc.). Vérifier à titre d’exercice que, si (X𝑛) est une chaîne de Markov
homogène,

P(X𝑛+2 = 𝑘,X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖,X𝑛−1 = 𝑖𝑛−1,…,X1 = 𝑖1,X0 = 𝑖0)
= P(X𝑛+2 = 𝑘 ∣ X𝑛+1 = 𝑗) P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖)
= P(X2 = 𝑘,X1 = 𝑗 ∣ X0 = 𝑖). (1)

Exemples : vérifier dans chacun des exemples suivants que X𝑛 est une chaîne de
Markov homogène et préciser sa matrice de transition.
1) Promenades aléatoires : soit (Y𝑛)𝑛∈N∗ une suite de variables aléatoires indépen-

dantes et de même loi à valeurs dans Z (ou Z𝑑), soit X0 une variable aléatoire
à valeurs dans Z (ou Z𝑑), indépendante des (Y𝑛), on pose X𝑛 = X0 +∑𝑛

𝑖=1 Y𝑖
pour tout entier 𝑛 ≥ 1.

2) Ruine du joueur : deux joueurs A et B disposant respectivement de fortunes
initiales 𝑎 et 𝑏 (entiers positifs) jouent à un jeu de hasard. La mise est de 1 €
par partie ; les résultats des parties sont indépendants, à chaque partie A a
la probabilité 𝑝 de gagner, 𝑞 de perdre et 𝑟 ≥ 0 de faire match nul (0 < 𝑝 < 1,
0 < 𝑝 < 1 et 𝑝+𝑞+𝑟 = 1). Le jeu se poursuit indéfiniment ou jusqu’à la ruine
d’un des deux joueurs. On note X𝑛 la fortune du joueur A après 𝑛 parties.
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3) Séries de succès : des candidats doivent répondre à une suite de questions de
difficulté variable, les performances des différents candidats sont indépen-
dantes. La probabilité pour chaque candidat de bien répondre à une question
de niveau 𝑘 est 𝑝𝑘, celle de donner une réponse fausse est 𝑞𝑘 = 1−𝑝𝑘. Lors-
qu’un candidat donne une réponse fausse, il est remplacé par le candidat
suivant qui démarre au niveau 0. X𝑛 représente le niveau atteint par le candi-
dat en lice à l’instant 𝑛 :

∀𝑛,𝑘 ∈N (𝑛 ≥ 𝑘) { P(X𝑛+1 = 𝑘+1∣ X𝑛 = 𝑘,X𝑛−1 = 𝑘−1,…X𝑛−𝑘 = 0) = 𝑝𝑘
P(X𝑛+1 = 0 ∣ X𝑛 = 𝑘,X𝑛−1 = 𝑘−1,…X𝑛−𝑘 = 0) = 𝑞𝑘

4) Modèle de diffusion gazeuse : On considère une enceinte faite de deux com-
partiments séparés par une cloison poreuse. Au départ le compartiment de
gauche contient 𝑎 molécules de gaz de type A, celui de droite 𝑏 molécules de
gaz de type B. On modélise la diffusion au travers de la paroi en supposant
qu’à chaque instant, il y a tirage au hasard d’une molécule dans chaque com-
partiment et échange des deux molécules tirées. La composition des deux
urnes après le 𝑛-ième échange est complètement déterminée par la donnée
de la variable X𝑛 nombre de molécules de gaz A dans l’urne de gauche.

5) File d’attente : Soit (T𝑛)𝑛∈N la suite des instants (aléatoires) d’arrivéedes clients
à un guichet. Un seul client est servi à la fois. On note X𝑛 le nombre de clients
en attente ou en cours de service juste avant l’instant T𝑛 et D𝑛 le nombre de
clients dont le service se termine dans l’intervalle [T𝑛,T𝑛+1[. On suppose les
variables D𝑛 indépendantes et de même loi donnée : pour tout 𝑘 ∈ N 𝑝𝑘 =
P(D0 = 𝑘). On a, si 𝑎+ =max(𝑎,0) désigne la partie positive du réel 𝑎,

∀𝑛 ∈N, X𝑛+1 = (X𝑛 +1−D𝑛)+

6) Gestion de stock : on s’intéresse au nombre de pièces d’unmême type en stock
dans un entrepôt, à différents instants (𝑡𝑛)𝑛∈N, par exemple à chaque fin de
journée ou de semaine. La demande pour ce type de pièces dans l’intervalle
[𝑡𝑛, 𝑡𝑛+1[ est une variable aléatoire entière D𝑛. La suite des v.a. (D𝑛)𝑛∈N est
supposée indépendante et de même loi connue. La politique de gestion est
la suivante : lorsque le niveau du stock à un des instants (𝑡𝑛) descend en
dessous d’un seuil 𝑠 fixé on se réapprovisionne de façon à ramener le stock à
son niveau maximal S déterminé par exemple par la taille de l’entrepôt ou les
moyens financiers de l’entreprise. On admet que la livraison intervient sans
délai, c’est-à-dire avant le début de la période suivante. La taille X𝑛 du stock
à l’instant 𝑡𝑛 vérifie

∀𝑛 ∈N, {
X𝑛+1 = (X𝑛 −D𝑛)+ si 𝑠 ≤ X𝑛 ≤ S
X𝑛+1 = (S−D𝑛)+ si X𝑛 < 𝑠
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7) Processus de branchement : de nombreux exemples de chaînes de Markov
interviennent en génétique (modèles de reproduction) et en physique (désin-
tégrations atomiques). On suppose qu’à la fin de son existence chaque orga-
nisme 𝑖 de la 𝑛-ième génération donne naissance à un nombre aléatoire Y𝑖,𝑛
de descendants. Les variables aléatoires (Y𝑖,𝑛)(𝑖,𝑛)∈N2 sont supposées indépen-
dantes et de même loi. Le nombre X𝑛 d’organismes de la 𝑛-ième génération
vérifie

∀𝑛 ∈N, X𝑛+1 =
X𝑛
∑
𝑖=1

Y𝑖,𝑛

Remarque : si (Y𝑛)𝑛∈N est une suite de variables aléatoires indépendantes et de
même loi à valeurs dans E et si 𝑓 ∶ E×E ↦ E est une fonction quelconque, alors
la suite (X𝑛)𝑛∈N définie par

∀𝑛 ∈N, X𝑛+1 = 𝑓(X𝑛,Y𝑛) et X0 donnée, indépendante des (Y𝑛)𝑛∈N,

est une chaîne de Markov homogène. Ce résultat (à démontrer en exercice)
fournit un moyen assez général pour établir qu’une suite de variables aléatoires
est une chaîne de Markov homogène.

Définition1.2 Onappellematrice de transitionde la chaînedeMarkovhomogène
(X𝑛) la matrice P définie par ¹ :∀(𝑖, 𝑗) ∈ E×E P(𝑖, 𝑗) = P(X1 = 𝑗 ∣ X0 = 𝑖).

Proposition 1.3 La loi d’une chaîne de Markov homogène est complètement
déterminée par la donnée de sa matrice de transition et de la loi de X0 (appelée
loi initiale) ² :∀𝑖 ∈ E, μ(𝑖) = P(X0 = 𝑖). Pour tout entier 𝑛 et tous 𝑖0, 𝑖1,…,𝑖𝑛 états
de E :

P(X𝑛 = 𝑖𝑛,X𝑛−1 = 𝑖𝑛−1,…,X1 = 𝑖1,X0 = 𝑖0) = μ(𝑖0)P(𝑖0, 𝑖1)P(𝑖1, 𝑖2)…P(𝑖𝑛−1, 𝑖𝑛).

DÉMONSTRATION. Immédiate à partir de la formule

P(
𝑛
∩
𝑖=0

A𝑖) = P(A0) P(A1 ∣ A0) P(A2 ∣ A1∩A0) … P(A𝑛 ∣ A𝑛−1∩…∩A0). (2)

et de la propriété de Markov homogène.

Proposition 1.4 (Chapman-Kolmogorov) Pour tout couple (𝑖, 𝑗) d’états de E et
pour tout couple (𝑛,𝑚) d’entiers naturels

P(X𝑛+𝑚 = 𝑗 ∣ X0 = 𝑖) = ∑
𝑘∈E

P(X𝑛 = 𝑘 ∣ X0 = 𝑖) P(X𝑚 = 𝑗 ∣ X0 = 𝑘) (3)

1. Si E n’est pas fini, la matrice a un nombre infini de lignes et de colonnes…
2. Le plus souvent X0 est connue de manière déterministe, dans ce cas la loi initiale est une

mesure de Dirac.
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En particulier la matrice des transitions en 𝑛 étapes est la puissance 𝑛-ième de la
matrice P des transitions en une étape ³ :

∀𝑛 ∈N, ∀(𝑖, 𝑗) ∈ E×E, P(X𝑛 = 𝑗 ∣ X0 = 𝑖) = P𝑛(𝑖, 𝑗) (4)

DÉMONSTRATION. Calculons P(X𝑛+𝑚 = 𝑗 ∣ X0 = 𝑖) en décomposant l’événement
{X𝑛+𝑚 = 𝑗} sur les événements ({X𝑛 = 𝑘})𝑘∈E qui forment une partition de Ω :

P(X𝑛+𝑚 = 𝑗 ∣ X0 = 𝑖) = P(X𝑛+𝑚 = 𝑗∩( ∪
𝑘∈E

X𝑛 = 𝑘) ∣ X0 = 𝑖)

= ∑
𝑘∈E

P(X𝑛+𝑚 = 𝑗∩X𝑛 = 𝑘 ∣ X0 = 𝑖)

= ∑
𝑘∈E

P(X𝑛+𝑚 = 𝑗,X𝑛 = 𝑘,X0 = 𝑖)
P(X0 = 𝑖)

= ∑
𝑘∈E

P(X𝑛+𝑚 = 𝑗 ∣ X𝑛 = 𝑘,X0 = 𝑖) P(X𝑛 = 𝑘,X0 = 𝑖)
P(X0 = 𝑖)

= ∑
𝑘∈E

P(X𝑚 = 𝑗 ∣ X0 = 𝑘)P(X𝑛 = 𝑘 ∣ X0 = 𝑖)

car X𝑛 est une chaîne de Markov homogène.
En particulier, pour 𝑛 = 𝑚 = 1 et pour tous (𝑖, 𝑗) ∈ E×E,

P(X2 = 𝑗 ∣ X0 = 𝑖) = ∑
𝑘∈E

P(X1 = 𝑗 ∣ X0 = 𝑘)P(X1 = 𝑘 ∣ X0 = 𝑖) = ∑
𝑘∈E

P(𝑖,𝑘)P(𝑘, 𝑗)

ce qui établit (4) dans le cas 𝑛 = 2. Pour 𝑚 = 1 et 𝑛 > 1, l’égalité (3) s’écrit

∀(𝑖, 𝑗) ∈ E×E P(X𝑛+1 = 𝑗 ∣ X0 = 𝑖) = ∑
𝑘∈E

P(X𝑛 = 𝑘 ∣ X0 = 𝑖)P(X1 = 𝑗 ∣ X0 = 𝑘)

= ∑
𝑘∈E

P(X𝑛 = 𝑘 ∣ X0 = 𝑖) P(𝑘, 𝑗)

donc si P(X𝑛 = 𝑘 ∣ X0 = 𝑖) = P𝑛(𝑖,𝑘) alors P(X𝑛+1 = 𝑗 ∣ X0 = 𝑖) = P𝑛+1(𝑖, 𝑗) et la
récurrence est établie.

2 Généralisations de la propriété de Markov

Dans la section précédente nous avons travaillé sur les suites finies de variables
aléatoires (X𝑘)𝑘≤𝑚, il est intéressant de considérer la chaîne « globalement » en

3. Dans toute la suite la notation P𝑛(𝑖, 𝑗) désigne le terme de la ligne 𝑖, colonne 𝑗 de la ma-
trice P𝑛, à ne pas confondre avec (P(𝑖, 𝑗))𝑛 !
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tant que variable aléatoire de (Ω,𝒜) dans EN muni d’une tribu ℱ adéquate. Si
on veut que X = (X𝑛)𝑛∈N soit mesurable de (Ω,𝒜) dans (EN,ℱ) dès que toutes
ses composantes X𝑛 le sont de (Ω,𝒜) dans (E,𝒫(E)), il ne faut pas choisir ℱ
trop grande (en particulier le choix ℱ = 𝒫(EN) ne convient pas). On construit
ℱ à partir des « cylindres » de EN définis ci-dessous.

2.1 Cylindres sur EN

Définition 2.1 On appelle cylindre de EN toute partie C de EN de la forme C =
B0 ×B1 ×⋯×B𝑛 ×E×E×E… , où 𝑛 est un entier quelconque et où les B𝑖 sont des
parties quelconques ⁴ de E.
On appelle tribu cylindrique sur EN la plus petite tribuℱ contenant les cylindres
de EN.

Proposition 2.2 Les cylindres de EN ont les propriétés suivantes :
a) l’intersection de deux cylindres est un cylindre ;
b) la réunion de deux cylindres n’est pas toujours un cylindre ;
c) le complémentaire d’un cylindre est une réunion finie de cylindres ;
d) l’algèbre de Boole engendrée sur EN par les cylindres est la familleℬ dont les

éléments sont les réunions finies de cylindres.

DÉMONSTRATION. a) Si 𝑛 ≥ 𝑚, on a

(B0 ×B1 ×⋯×B𝑛 ×E×…)∩(B′
0 ×B′

1 ×⋯×B𝑚 ×E×…)
= B0∩B′

0 ×⋯×B𝑚∩B′
𝑚 ×B𝑚+1 ×⋯×B𝑛 ×E×…

b) Considérer la réunion des cylindres B0×E×E×… et E×B′
1×E×… (faire un

dessin dans R3 pour B0 et B′
1 singletons deN).

c) Soit C = B0 ×B1 ×⋯×B𝑛 ×E×E… ,

𝑥 ∈ C ⟺ ∀𝑖 ≤ 𝑛, 𝑥𝑖 ∈ B𝑖 donc

𝑥 ∈ C ⟺ ∃𝑖 ≤ 𝑛, 𝑥𝑖 ∈ B𝑖 d’où C =
𝑛
∪
𝑖=0

{E×⋯×E×B𝑖 ×E×…}.

d) Montrons que la familleℬ est une algèbre deBoole : il est immédiat de vérifier
queE (cylindre) appartient àℬ et queℬ est stable par réunion finie.Vérifions

4. E dénombrable, est muni de la tribu de toutes les parties de E. Si E était muni d’une tribu
ℰ plus petite, il faudrait bien sûr prendre les B𝑖 dans ℰ.
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que ℬ est stable par complémentation : soit B = ∪𝑘
𝑗=1C𝑗 une réunion finie

de cylindres, son complémentaire B = ∩𝑘
𝑗=1C𝑗 et d’après le point c), chaque

C𝑗 est une réunion de 𝑛𝑗 cylindres : C𝑗 = ∪𝑛𝑗
𝑚=1C

′
𝑗,𝑚. Finalement, en posant

𝑛 =max𝑗≤𝑘(𝑛𝑗) et C′
𝑗,𝑚 = ∅ pour 𝑛𝑗 < 𝑚 ≤ 𝑛, on a

B =
𝑘
∩
𝑗=1

C𝑗 =
𝑘
∩
𝑗=1

(
𝑛𝑗
∪
𝑚=1

C′
𝑗,𝑚) =

𝑘
∩
𝑗=1

(
𝑛
∪
𝑚=1

C′
𝑗,𝑚) =

𝑛
∪
𝑚=1

(
𝑘
∩
𝑗=1

C′
𝑗,𝑚) =

𝑛
∪
𝑚=1

C′′
𝑚

où les C′′
𝑚 sont des intersections finies de cylindres donc des cylindres (point

a) ; le complémentaire de B est bien une réunion finie de cylindres.
La famille ℬ est donc une algèbre de Boole contenant les cylindres ; réci-
proquement toute algèbre de Boole contenant les cylindres contient par
définition les réunions finies de cylindres, la proposition est démontrée.

Proposition 2.3 Si pour tout 𝑛 ∈N, X𝑛 est mesurable (Ω,𝒜) ↦ (E,𝒫(E)) et siℱ
est la tribu cylindrique sur EN, alors X = (X𝑛)𝑛∈N est mesurable (Ω,𝒜) ↦ (EN,ℱ).

DÉMONSTRATION. Comme ℱ est la tribu engendrée par les cylindres, il suffit de
vérifier que pour tout cylindre C, X−1(C) appartient à 𝒜. Mais

X−1(B0 ×B1 ×⋯×B𝑛 ×E×E×E…) =
𝑛
∩
𝑖=0

X−1
𝑖 (B𝑖) ∈ 𝒜

car les X𝑛 sont mesurables (Ω,𝒜) ↦ (E,𝒫(E)).

Il reste à munir (EN,ℱ) d’une probabilité, on pourrait s’en tirer en disant qu’il
« suffit » de prendre la probabilité image de P (probabilité sur Ω) par X, mais ce
serait bien hypocrite car P n’a jamais été définie précisément ! En fait comment
construit-on (Ω,𝒜,P)?
Qu’il s’agisse de construire un espace probabilisé (Ω,𝒜,P) pour une suite dé-
nombrable ⁵ de variables aléatoires indépendantes de lois données à valeurs
dans (E,ℰ) ou d’une chaîne de Markov, on procède de la même manière :

— on se place sur l’espace produit EN que l’on munit de sa tribu cylindrique
ℱ ;

— on essaie de prolonger les probabilités P𝑛 définies « de façon naturelle »
sur les produits finis E𝑛 en une probabilitéP sur EN, l’existence et l’unicité
de P sont assurées par le théorème de Kolmogorov (voir [4]) moyennant
des conditions raisonnables de compatibilité des P𝑛 (la trace sur E𝑛 de la
probabilité P𝑛+1 définie sur E𝑛+1 doit être identique à P𝑛).

5. Le cas d’une suite finie de variables aléatoires indépendantes de lois données est trivial : on
se place sur l’espace produit muni de la tribu produit et de la probabilité produit (indépendance
oblige).
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Finalement l’espace (Ω,𝒜,P) ainsi construit pour porter la suite X = (X𝑛)𝑛∈N est
identique à l’espace d’arrivée (EN,ℱ,P) et X est l’application identité.
Dans le cas des chaînes de Markov homogènes les P𝑛 sont définies à partir de
la loi initiale λ et de la matrice de transition P (cf. prop. 1.3) et la condition de
compatibilité est facile à vérifier.
On notera (Ω,𝒜,Pλ) l’espace probabilisé adapté à la chaîne de Markov homo-
gène de matrice de transition P donnée et de loi initiale λ (λ probabilité donnée
surE). Dans le cas oùλ est unemesure deDirac (cas oùX0 est connue demanière
déterministe), on note P𝑥 au lieu de Pδ𝑥 la probabilité construite sur(Ω,𝒜).

2.2 Opérateurs de décalage sur EN

Définition 2.4 On appelle opérateur de décalage (ou translation) sur EN l’appli-
cation θ de EN dans lui-même définie par

∀(𝑥𝑛) ∈ EN θ((𝑥0,𝑥1,…,𝑥𝑛,…)) = (𝑥1,𝑥2,…,𝑥𝑛+1,…)

On considère également ses itérés, définis par θ𝑘+1 = θ∘θ𝑘 : θ𝑘((𝑥𝑛)) = ((𝑥𝑛+𝑘)).

La proposition suivante énonce la forme globale de la propriété de Markov
homogène.

Proposition 2.5 Soit X = (X𝑛)𝑛∈N une chaîne de Markov homogène définie sur
(Ω,𝒜,Pλ) à valeurs dans (EN,ℱ), et𝒜𝑘 = σ(X0,…,X𝑘) la sous-tribu de𝒜 engen-
drée par les variables aléatoires X0,…,X𝑘. Alors, la loi conditionnelle de θ𝑘(X)
sachant𝒜𝑘 est la loi conditionnelle de X sachant X𝑘 :

∀𝑓mesurable ∶ (EN,ℱ) ↦ (R+,ℬ(R+)), Eλ(𝑓(θ𝑘(X)) ∣ 𝒜𝑘) = EX𝑘(𝑓(X)).

DÉMONSTRATION. Il suffit de démontrer l’égalité ci-dessus pour les fonctions
indicatrices (linéarité et passageà la limite croissante) etmêmepour les fonctions
indicatrices de cylindres : ceci résulte par exemple du théorème d’unicité des
mesures (la classe des cylindres est stable par intersection finie et contient EN).
On peut aussi utiliser la proposition 2.2 et dire que si deux mesures coïncident
sur les cylindres, elles coïncident sur les réunions finies de cylindres (formule
de Poincaré et stabilité de la famille des cylindres par intersection finie) donc
sur l’algèbre de Boole ℬ engendrée et finalement aussi sur la tribu engendrée
(cf. [1] th. I-4-7).
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Calculons donc pour le cylindre C = B0 ×B1 ×⋯×B𝑛 ×E×E×E… l’espérance
conditionnelle Eλ(1C(θ𝑘(X)) ∣ 𝒜𝑘) sur l’événement X𝑘 = 𝑖𝑘,…,X0 = 𝑖0 :

Sur {X𝑘 = 𝑖𝑘,…,X0 = 𝑖0}, Eλ(1C(θ𝑘(X)) ∣ 𝒜𝑘) =
Pλ(X𝑛+𝑘 ∈ B𝑛,…,X𝑘 ∈ B0 ∣ X𝑘 = 𝑖𝑘,…,X0 = 𝑖0).

On décompose les B𝑗 pour pouvoir appliquer la propriété de Markov :

Pλ(X𝑛+𝑘 ∈ B𝑛,…,X𝑘 ∈ B0 ∣ X𝑘 = 𝑖𝑘,…,X0 = 𝑖0)
= ∑

(𝑗0,…,𝑗𝑛)∈B0×⋯×B𝑛
Pλ(X𝑛+𝑘 = 𝑗𝑛,…,X𝑘 = 𝑗0 ∣ X𝑘 = 𝑖𝑘,…,X0 = 𝑖0)

= ∑
(𝑗0,…,𝑗𝑛)∈B0×⋯×B𝑛

1𝑗0=𝑖𝑘 Pλ(X𝑛+𝑘 = 𝑗𝑛,…,X𝑘+1 = 𝑗1 ∣ X𝑘 = 𝑖𝑘,…,X0 = 𝑖0)

soit en sommant en 𝑗0 et en appliquant la propriété de Markov homogène ⁶ :

= ∑
(𝑗1,…,𝑗𝑛)∈B1×⋯×B𝑛

1B0 (𝑖𝑘)P𝑖𝑘 (X𝑛 = 𝑗𝑛,…,X1 = 𝑗1)

= 1B0 (𝑖𝑘)P𝑖𝑘 (X𝑛 ∈ B𝑛,…,X1 ∈ B1) = E𝑖𝑘 (1C(X))

Finalement, pour tous 𝑖0,…,𝑖𝑘 de E, on a sur {X𝑘 = 𝑖𝑘,…,X0 = 𝑖0}

Eλ(1C(θ𝑘(X)) ∣ 𝒜𝑘) = EX𝑘 (1C(X)).

2.3 Propriété de Markov forte

Rappelons quelques définitions classiques :

Définition 2.6 Soit (Ω,𝒜,P) un espace de probabilité.
On appelle filtration adaptée à la suite X = (X𝑛)𝑛∈N la suite croissante de sous-
tribus (𝒜𝑛) de𝒜, engendrées par les variables (X𝑘)𝑘≤𝑛 :𝒜𝑛 = σ(X0,…,X𝑛).

On dit que la variable aléatoire T à valeurs dansN=N∪{+∞} est un temps d’arrêt
pour la filtration (𝒜𝑛) si et seulement si pour tout 𝑛 de N l’événement {T = 𝑛}
appartient à𝒜𝑛.
On définit ensuite la tribu𝒜T des événements antérieurs à T (temps d’arrêt) par

∀A ∈ 𝒜, A ∈ 𝒜T ⟺ ∀𝑛 ∈N, A∩ {T = 𝑛} ∈ 𝒜𝑛.

On étend enfin la définition des opérateurs de décalage aux temps d’arrêt en posant
θT = θ𝑛 sur {T = 𝑛}, ce qui définit θT sur l’événement {T < +∞}.

6. À faire en exercice en généralisant le calcul (1) p. 1 : utiliser la formule (2) p. 3.
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Proposition 2.7 (propriété de Markov forte) Soit X = (X𝑛)𝑛∈N une chaîne de
Markov homogène définie sur (Ω,𝒜,Pλ) à valeurs dans (E,ℱ) et T un temps
d’arrêt pour la filtration (𝒜𝑛 = σ(X0,…,X𝑛)), alors sur l’événement {T < +∞}

∀𝑓mesurable ∶ (EN,ℱ) ↦ (R+,ℬ(R+)), Eλ(𝑓(θT(X)) ∣ 𝒜T) = EXT(𝑓(X)).

DÉMONSTRATION. Oncalcule l’espéranceconditionnelleEλ(𝑓(θT(X)) ∣ XT,…,X0)
sur l’événement {T < +∞} en la décomposant selon la valeur de T :

Eλ(𝑓(θT(X)) ∣ 𝒜T) 1T<+∞ = ∑
𝑘∈N

Eλ(𝑓(θ𝑘(X)) ∣ 𝒜𝑘) 1T=𝑘

soit en utilisant la proposition 2.5 :

= ∑
𝑘∈N

EX𝑘(𝑓(X)) 1T=𝑘

= EXT(𝑓(X)) 1T<+∞ .

3 Classification des états

3.1 Classes d’états communicants

Définition 3.1 Soient 𝑖 et 𝑗 deux états de E. On dit que l’état 𝑗 est accessible à
partir de 𝑖 si et seulement si

∃𝑛 ≥ 0, P𝑛(𝑖, 𝑗) = P(X𝑛 = 𝑗 ∣ X0 = 𝑖) > 0.

On dit que les états 𝑖 et 𝑗 communiquent et on note 𝑖 ⇄ 𝑗 si et seulement si 𝑗 est
accessible à partir de 𝑖 et 𝑖 est accessible à partir de 𝑗.

Proposition 3.2 La relation 𝑖 ⇄ 𝑗 est une relation d’équivalence sur E. L’espace E
peut donc être partitionné en classes d’équivalence pour la relation 𝑖 ⇄ 𝑗, appelées
classes d’états communicants.

DÉMONSTRATION. La réflexivité est évidente (pour 𝑛 = 0 P(X0 = 𝑖 ∣ X0 = 𝑖) = 1),
tout comme la symétrie. La transitivité résulte de la propriété de Chapman-
Kolmogorov : si P𝑛(𝑖,𝑘) > 0 et si P𝑚(𝑘, 𝑗) > 0,

P𝑛+𝑚(𝑖, 𝑗) = P(X𝑛+𝑚 = 𝑗 ∣ X0 = 𝑖) = ∑
𝑙∈E

P𝑛(𝑖, 𝑙) P𝑚(𝑙, 𝑗) ≥ P𝑛(𝑖,𝑘) P𝑚(𝑘, 𝑗) > 0.

Définition 3.3 Lorsque l’espace E est réduit à une seule classe (cas où tous les
états communiquent) on dit que la chaîne est irréductible.
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Pour rechercher les classes d’états communicants, il est commode de travailler
sur le graphe de la chaîne plutôt que sur la matrice de transition : le graphe
est obtenu en traçant pour tout couple d’états (𝑖, 𝑗) un arc allant de 𝑖 à 𝑗 si et
seulement si P(𝑖, 𝑗) > 0. On peut ajouter une valeur à l’arc (la probabilité P(𝑖, 𝑗))
dans ce cas la donnée du graphe valué est équivalente à la donnée de la matrice
de transition.
Exemples :

P =

⎛
⎜⎜⎜⎜
⎝

½ ½ 0 0 0
¼ ½ ¼ 0 0
0 0 0 1 0
0 0 ½ 0 ½
0 0 0 1 0

⎞
⎟⎟⎟⎟
⎠

1 2 3 4 5½
½

¼

¼
½

1 ½

½ 1

La chaîne comporte deux classes : {1,2} et {3,4,5}.
Vérifier que l’espace d’états associé à la ruine du joueur comporte trois classes
(à préciser).
Vérifier que la promenade aléatoire sur Z2 telle qu’elle est définie à l’exercice 5
comporte deux classes à préciser.
En revanche la promenade aléatoire sur Z2 définie par

(X𝑛+1,Y𝑛+1) =

⎧⎪⎪⎪
⎨
⎪⎪⎪
⎩

(X𝑛 +1,Y𝑛) avec probabilité ¼
(X𝑛 −1,Y𝑛) avec probabilité ¼
(X𝑛,Y𝑛 +1) avec probabilité ¼
(X𝑛,Y𝑛 −1) avec probabilité ¼

est irréductible.

3.2 Récurrence et transience

Définition 3.4 Un état 𝑖 de E est dit récurrent si et seulement si, partant de 𝑖,
la chaîne X revient P𝑖-presque sûrement à l’état 𝑖. Un état non récurrent est dit
transient. On pose

τ𝑖(ω) = {
inf {𝑛 ≥ 1 ∣ X𝑛(ω) = 𝑖} ou
+∞ sur {∀𝑛 ≥ 1, X𝑛(ω) ≠ 𝑖}

τ𝑖 est un temps d’arrêt pour la filtration (𝒜𝑛 = σ(X0,…,X𝑛)), il est appelé temps
de retour à 𝑖 lorsque la chaîne part de 𝑖 et temps d’atteinte de 𝑖 sinon.
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On a l’équivalence suivante :

∀𝑖 ∈ E, 𝑖 récurrent ⟺ P𝑖(τ𝑖 < +∞) = 1
∀𝑖 ∈ E, 𝑖 transient ⟺ P𝑖(τ𝑖 < +∞) < 1

Exemple : onmontre (cf. exercice 3) quepour la promenadealéatoire surZdéfinie
comme somme de variables aléatoires de Bernoulli P0(τ0 < +∞) = 1− |𝑝−𝑞|.
Ainsi, pour 𝑝 = 𝑞 tous les états sont récurrents, tandis que pour 𝑝 ≠ 𝑞 tous les
états sont transients (le calcul fait pour l’état 0 vaut bien sûr pour tout autre état).
On s’intéresse également à la variable aléatoire N𝑖 nombre de passages de la
chaîne par l’état 𝑖 après l’instant 0 :

N𝑖(ω) = ∑
𝑛∈N∗

1X𝑛(ω)=𝑖

Nous aurons besoin du résultat intuitif suivant (expliquer sa signification) :

Proposition 3.5 Soient 𝑖 et 𝑗 deux états quelconques de E, on a

∀𝑛 ∈N, P𝑗(N𝑖 ≥ 𝑛+1) = P𝑗(τ𝑖 < +∞) P𝑖(N𝑖 ≥ 𝑛). (5)

DÉMONSTRATION. On considère l’instant τ𝑖 de premier passage de la chaîne par
l’état 𝑖. L’événement {N𝑖 ≥ 𝑛+1} peut s’écrire ⁷ :

{N𝑖 ≥ 𝑛+1} = {τ𝑖 < +∞∩N𝑖 ∘θτ𝑖 ≥ 𝑛}

où N𝑖 ∘θτ𝑖 désigne le nombre de visites à l’état 𝑖 après l’instant τ𝑖. La propriété
de Markov forte appliquée à l’instant τ𝑖 donne :

P𝑗(N𝑖 ≥ 𝑛+1) = P𝑗(N𝑖 ∘θτ𝑖 ≥ 𝑛 ∣ τ𝑖 < +∞)P𝑗(τ𝑖 < +∞)
= P𝑖(N𝑖 ≥ 𝑛) P𝑗(τ𝑖 < +∞) car Xτ𝑖 = 𝑖 sur {τ𝑖 < +∞}.

Remarque : il est possible de contourner le recours à la propriété de Markov
forte dans la démonstration de (5). On remarque que {N𝑖 ≥ 1} = {τ𝑖 < +∞} et
on décompose l’événement {N𝑖 ≥ 𝑛+1} en fonction des valeurs prises par τ𝑖,
instant de premier passage par 𝑖 :

∀𝑛 ≥ 0, {N𝑖 ≥ 𝑛+1} = {N𝑖 ≥ 𝑛+1∩( ∪
𝑘∈N∗

τ𝑖 = 𝑘)} = ∪
𝑘∈N∗

{N𝑖 ≥ 𝑛+1∩τ𝑖 = 𝑘}

7. Dans cette formule,θopère surΩ, ce qui supposeΩ=EN, voir la constructionde (Ω,𝒜,Pλ)
page 7.
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les événements {τ𝑖 = 𝑘}𝑘∈N∗ étant deux à deux disjoints,

∀𝑛 ≥ 0, P𝑗(N𝑖 ≥ 𝑛+1) = ∑
𝑘∈N∗

P𝑗(N𝑖 ≥ 𝑛+1∩τ𝑖 = 𝑘)

= ∑
𝑘∈N∗

P𝑗(N𝑖 ≥ 𝑛+1∩(X𝑘 = 𝑖,X𝑘−1 ≠ 𝑖,…,X1 ≠ 𝑖))

= ∑
𝑘∈N∗

P𝑗(N𝑖 ≥ 𝑛+1 ∣ X𝑘 = 𝑖,X𝑘−1 ≠ 𝑖,…,X1 ≠ 𝑖)

⋅P𝑗(X𝑘 = 𝑖,X𝑘−1 ≠ 𝑖,…,X1 ≠ 𝑖)

= ∑
𝑘∈N∗

P𝑖(N𝑖 ≥ 𝑛) P𝑗(τ𝑖 = 𝑘) (prop. de Markov homogène)

= P𝑗(τ𝑖 < +∞) P𝑖(N𝑖 ≥ 𝑛).

Proposition 3.6 Les conditions suivantes sont équivalentes :
a) l’état 𝑖 est récurrent (P𝑖(τ𝑖 < +∞) = 1) ;
b) la chaîne X revient P𝑖-p.s. une infinité de fois à l’état 𝑖 :P𝑖(N𝑖 = +∞) = 1 ;
c) la série∑𝑛∈N P𝑛(𝑖, 𝑖) diverge.
Les conditions suivantes sont équivalentes :
a’) l’état 𝑖 est transient (P𝑖(τ𝑖 < +∞) < 1) ;
b’) la variable aléatoireN𝑖 est P𝑖-p.s. finie (P𝑖(N𝑖 = +∞) = 0) et elle suit une loi

géométrique ⁸ surN : ∀𝑛 ∈N, P𝑖(N𝑖 ≥ 𝑛) = (P𝑖(τ𝑖 < +∞))𝑛 ;
c’) la variable aléatoireN𝑖 est P𝑖-intégrable : E𝑖(N𝑖) = ∑𝑛≥1 P𝑛(𝑖, 𝑖) < +∞.

DÉMONSTRATION. Appliquons l’égalité (5) dans le cas 𝑗 = 𝑖.
Cas 𝑖 récurrent : P𝑖(τ𝑖 < +∞) = 1, l’égalité (5) s’écrit pour 𝑗 = 𝑖 :

∀𝑛 ∈N, P𝑖(N𝑖 ≥ 𝑛+1) = P𝑖(N𝑖 ≥ 𝑛) = P𝑖(N𝑖 ≥ 1) = P𝑖(τ𝑖 < +∞) = 1

donc P𝑖(N𝑖 = +∞) = 1 et l’implication (a ⇒ b) est établie.
Cas 𝑖 transient :α𝑖 = P𝑖(τ𝑖 < +∞) < 1, l’égalité (5) donne ({N𝑖 ≥ 1} = {τ𝑖 < +∞}) :

∀𝑛 ∈N, P𝑖(N𝑖 ≥ 𝑛+1) = α𝑖 P𝑖(N𝑖 ≥ 𝑛) = (α𝑖)𝑛 P𝑖(N𝑖 ≥ 1) = (α𝑖)𝑛+1

8. Elle charge 0 contrairement aux lois géométriques usuelles : pour tout 𝑛 positif ou nul,
P𝑖(N𝑖 =𝑛) = (1−α𝑖) (α𝑖)𝑛 avec α𝑖 = P𝑖(τ𝑖 <+∞).
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doncP𝑖(N𝑖 = +∞) = lim ↓ (α𝑖)𝑛 = 0,N𝑖 suit une loi géométrique surN ; rappelons
que, pour toute variable Z à valeurs dansN, on a

E(Z) = ∑
𝑛∈N

𝑛P(Z = 𝑛) = ∑
𝑛≥1

P(Z ≥ 𝑛), d’où

E𝑖(N𝑖) = ∑
𝑛≥1

P𝑖(N𝑖 ≥ 𝑛) =
α𝑖

1−α𝑖
< +∞.

L’égalité E𝑖(N𝑖) = ∑𝑛∈N P𝑛(𝑖, 𝑖) découle immédiatement du théorème de Tonelli :

E𝑖(N𝑖) = E𝑖( ∑
𝑛∈N∗

1X𝑛=𝑖) = ∑
𝑛∈N∗

E𝑖(1X𝑛=𝑖) = ∑
𝑛∈N∗

P𝑖(X𝑛 = 𝑖) = ∑
𝑛∈N∗

P𝑛(𝑖, 𝑖).

Ainsi les implications (a’ ⇒ b’ ⇒ c’) sont établies, (b ⇒ c) également (si la loi
de N𝑖 charge +∞, N𝑖 ne peut être intégrable et ∑𝑛∈N P𝑛(𝑖, 𝑖) diverge). Les impli-
cations (c ⇒ a) (contraposée de (a’ ⇒ c’)) et (c’ ⇒ a’) (contraposée de (a ⇒ c))
sont établies aussi.

Proposition 3.7 La récurrence et la transience sont des propriétés de classe : si
les états 𝑖 et 𝑗 communiquent, alors 𝑖 et 𝑗 sont tous deux récurrents ou tous deux
transients.

DÉMONSTRATION. Si les états 𝑖 et 𝑗 communiquent, il existe des entiers 𝑛 ≥ 1 et
𝑚 ≥ 1 tels que ,P𝑛(𝑖, 𝑗) > 0 etP𝑚(𝑗, 𝑖) > 0.P𝑛+𝑘+𝑚 est le produit des troismatrices
positives P𝑛, P𝑘, P𝑚, d’où :

∀𝑘 ∈N, P𝑛+𝑘+𝑚(𝑖, 𝑖) ≥ P𝑛(𝑖, 𝑗)P𝑘(𝑗, 𝑗)P𝑚(𝑗, 𝑖)

soit en sommant sur 𝑘 :

∑
𝑘∈N∗

P𝑘(𝑖, 𝑖) ≥ ∑
𝑘∈N∗

P𝑛+𝑘+𝑚(𝑖, 𝑖) ≥ P𝑛(𝑖, 𝑗)P𝑚(𝑗, 𝑖) ∑
𝑘∈N∗

P𝑘(𝑗, 𝑗).

D’après la proposition 3.6 un état 𝑖 est transient ou récurrent selon que la série
∑𝑘∈N∗ P𝑘(𝑖, 𝑖) converge ou diverge; l’inégalité ci-dessus prouve que la conver-
gence de la série ∑𝑘∈N∗ P𝑘(𝑖, 𝑖) implique celle de ∑𝑘∈N∗ P𝑘(𝑗, 𝑗) et que la diver-
gence de ∑𝑘∈N∗ P𝑘(𝑗, 𝑗) implique celle de ∑𝑘∈N∗ P𝑘(𝑖, 𝑖), donc les deux séries sont
toujours de même nature et les états 𝑖 et 𝑗 aussi.

Proposition 3.8 Tous les états d’une même classe récurrente sont visités P𝑗-p.s.
une infinité de fois à partir de n’importe quel état 𝑗 de la classe : soient 𝑖 et 𝑗 deux
états appartenant à la même classe récurrente, alors

P𝑗(τ𝑖 < +∞) = P𝑗(N𝑖 = +∞) = 1.
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DÉMONSTRATION. Comme les états 𝑖 et 𝑗 communiquent, il existe un entier 𝑛 tel
que P𝑛(𝑖, 𝑗) > 0. Si P𝑗(τ𝑖 = +∞) > 0, la probabilité de ne pas repasser une infinité
de fois par 𝑖 en partant de 𝑖 est minorée par le produit P𝑛(𝑖, 𝑗) P𝑗(τ𝑖 = +∞) > 0,
ce qui contredit le fait que 𝑖 est récurrent. On a donc P𝑗(τ𝑖 = +∞) = 0 ou encore
P𝑗(τ𝑖 < +∞) = 1 et en reportant ceci dans l’égalité (5) on obtient pour tout 𝑛,
P𝑗(N𝑖 ≥ 𝑛+1) = P𝑖(N𝑖 ≥ 𝑛) ≥ P𝑖(N𝑖 = +∞) = 1 (𝑖 est récurrent) puis par passage
à la limite décroissante P𝑗(N𝑖 = +∞) = 1.

Proposition 3.9 La probabilité de sortir d’une classe récurrente est nulle ; plus
précisément si 𝑖 est un état récurrent et C(𝑖) sa classe

∀𝑗 ∉ C(𝑖), ∀𝑛 ∈N, P𝑖(X𝑛 = 𝑗) = P𝑛(𝑖, 𝑗) = 0.

DÉMONSTRATION. Soit 𝑗 ∉ C(𝑖), supposons qu’il existe un 𝑛 tel que P𝑛(𝑖, 𝑗) > 0 ;
dans ce cas, pour tout 𝑚, P𝑚(𝑗, 𝑖) = 0 sinon les états 𝑖 et 𝑗 communiqueraient.
Mais alors la probabilité de non retour à 𝑖 partant de 𝑖 est non nulle car minorée
par P𝑛(𝑖, 𝑗) > 0, ce qui contredit le fait que 𝑖 est récurrent.

Proposition 3.10 Toute chaîne de Markov homogène sur un espace d’états fini a
au moins un état récurrent. En particulier, toute chaîne irréductible sur un espace
d’états fini est récurrente.

DÉMONSTRATION. Montrons que pour tout état 𝑖 transient et pour tout 𝑗, l’espé-
rance du nombre de passages par l’état 𝑖, E𝑗(N𝑖) est finie : rappelons que pour
toute variable Z entière positive E(Z) = ∑𝑛≥1P(Z ≥ 𝑛), en utilisant l’égalité (5) on
obtient

E𝑗(N𝑖) = ∑
𝑛∈N

P𝑗(N𝑖 ≥ 𝑛+1) = ∑
𝑛∈N

P𝑗(τ𝑖 < +∞) P𝑖(N𝑖 ≥ 𝑛)

= P𝑗(τ𝑖 < +∞) ∑
𝑛∈N

P𝑖(N𝑖 ≥ 𝑛)

= P𝑗(τ𝑖 < +∞) (1+E𝑖(N𝑖)).

donc E𝑗(N𝑖) < +∞ pour tout état 𝑖 transient.
Si tous les états de E (fini) étaient transients on aurait aussi

E𝑗(∑
𝑖∈E

N𝑖) = ∑
𝑖∈E
E𝑗(N𝑖) < +∞ (Tonelli).

ce qui est absurde puisque ∑𝑖∈EN𝑖 est le nombre total de visites aux états de E
c’est-à-dire card(N) = +∞.
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4 Théorèmes limites

Les deux questions que l’on est amené à se poser sont les suivantes :
1. Y a-t-il convergence en loi des X𝑛 lorsque 𝑛 → +∞?

P𝑖(X𝑛 = 𝑗) = P𝑛(𝑖, 𝑗) −−−−−→
𝑛→+∞

μ(𝑖, 𝑗)?

2. Y a-t-il convergence des fréquences de passage par chaque état 𝑗?

𝑓𝑗𝑛(ω) =
1
𝑛

𝑛
∑
𝑘=1

1X𝑘(ω)=𝑗
P𝑖−p.s.−−−−−→
𝑛→+∞

λ(𝑖, 𝑗)?

Remarquons tout de suite que si les deux convergences ont lieu, les limites μ(𝑖, 𝑗)
et λ(𝑖, 𝑗) sont les mêmes : la fréquence 𝑓𝑗𝑛(ω) est majorée par 1, fonction P𝑖-
intégrable, donc par convergence dominée E𝑖(𝑓

𝑗
𝑛) → E𝑖(λ(𝑖, 𝑗)) = λ(𝑖, 𝑗) et par

linéarité E𝑖(𝑓
𝑗
𝑛) = 1

𝑛 ∑𝑛
𝑘=1 P

𝑘(𝑖, 𝑗) → μ(𝑖, 𝑗) (si une suite 𝑢𝑛 converge, la suite de
ses moyennes de Césaro converge vers la même limite).

4.1 Cas 𝒋 transient

Lorsque 𝑗 est un état transient, on a vu dans la démonstration de la proposi-
tion 3.10 que pour tout 𝑖, E𝑖(N𝑗) est finie, mais

E𝑖(N𝑗) = E𝑖( ∑
𝑛∈N∗

1X𝑛=𝑗) = ∑
𝑛∈N∗

E𝑖(1X𝑛=𝑗) = ∑
𝑛∈N∗

P𝑖(X𝑛 = 𝑗) = ∑
𝑛∈N∗

P𝑛(𝑖, 𝑗).

Cette série converge, son terme général tend donc vers 0.
Le nombre de visites à l’état transient 𝑗 étant fini P𝑖-p.s. pour tout 𝑖 (même P𝑖-
intégrable, cf. ci-dessus), la suite (1X𝑘(ω)=𝑗)𝑘∈N est donc nulle pour tout 𝑘 assez
grand (dépendant de ω) et donc

1
𝑛

𝑛
∑
𝑘=1

1X𝑘(ω)=𝑗
P𝑖−p.s.−−−−−→
𝑛→+∞

0.

Proposition 4.1 Pour tout état 𝑖 de E et pour tout état 𝑗 transient on a

P𝑖(X𝑛 = 𝑗) = P𝑛(𝑖, 𝑗) −−−−−→
𝑛→+∞

0 et
1
𝑛

𝑛
∑
𝑘=1

1X𝑘(ω)=𝑗
P𝑖−p.s.−−−−−→
𝑛→+∞

0.
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4.2 Cas des chaînes irréductibles récurrentes

La probabilité de sortir d’une classe récurrente est nulle (cf. proposition 3.9). Si
les états 𝑖 et 𝑗 sont récurrents, le seul cas non trivial est celui où ils sont dans la
même classe, ce cas se ramène à l’étude d’une chaîne irréductible récurrente.
Le dernier cas, 𝑖 transient et 𝑗 récurrent, est laissé en exercice (voir exercice 7).

4.2.1 Mesures invariantes

Une façon commode de définir une mesure λ sur un espace d’états E dénom-
brable est de se donner un vecteur ligne λ = (λ𝑖)𝑖∈E où λ𝑖 = λ({𝑖}).

Définition 4.2 Soit P la matrice de transition d’une chaîne deMarkov homogène;
on dit qu’unemesure π sur E est invariante par P si et seulement si elle est positive
et π vérifie l’équation matricielle πP = π.

La proposition suivante justifie l’intérêt porté aux mesures invariantes.

Proposition 4.3 a) Soit (X𝑛)𝑛∈N une chaîne de Markov homogène. Si π est une
probabilité invariante et si à un instant𝑘, la loi deX𝑘 est π, alors à tout instant
ultérieur𝑚 ≥ 𝑛,X𝑚 est aussi de loi π.

b) Si E est un espace d’états fini et si pour tout couple (𝑖, 𝑗) de E2, P𝑛(𝑖, 𝑗) → L𝑖(𝑗),
alors L𝑖 est une probabilité invariante par P.

DÉMONSTRATION. a) Si π est la loi de X𝑘, il est immédiat de vérifier que πP est
la loi de X𝑘+1.

b) Si la suite de matrices P𝑛 converge vers la matrice L, alors P𝑛+1 converge
aussi vers L et comme P𝑛+1 = P𝑛P, la matrice limite L vérifie L = LP (linéarité
du passage à la limite, E étant fini), donc chacune de ses lignes L𝑖 vérifie
L𝑖 = L𝑖P.

Les mesures limites possibles sont donc des mesures invariantes.

Théorème 4.4 Toute chaîne de Markov homogène récurrente irréductible admet
une mesure invariante strictement positive sur E et toutes les mesures invariantes
sont proportionnelles.

Ce résultat découle des deux lemmes suivants, le premier établit l’existence d’une
mesure invariante, le second son unicité à un facteur multiplicatif près.
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Lemme 4.5 (existence) Soit X une chaîne de Markov homogène de matrice P,
irréductible récurrente. On fixe un état 𝑘 et on pose

∀𝑗 ∈ E, ν𝑘𝑗 = E𝑘( ∑
0≤𝑛<τ𝑘

1X𝑛=𝑗)

ν𝑘𝑗 représente le nombre moyen de passages par l’état 𝑗 entre deux passages par
l’état 𝑘. Le vecteur ligne ν𝑘 a les propriétés suivantes :
a) ν𝑘𝑘 = 1 ;
b) ν𝑘 est invariant par P : ν𝑘 P = ν𝑘 ;
c) ∀𝑗 ∈ E, 0 < ν𝑘𝑗 < +∞.

DÉMONSTRATION. a) est évident : pour 𝑛 = 0, 1X𝑛=𝑘 = 1 P𝑘-p.s. et les autres
termes de la somme sont tous nuls (𝑛 < τ𝑘).
b) Calculons le 𝑗-ième terme (ν𝑘 P)𝑗 du vecteur ligne ν𝑘 P :

∑
𝑖∈E

ν𝑘𝑖 P(𝑖, 𝑗) = ∑
𝑖∈E
E𝑘( ∑

0≤𝑛<τ𝑘
1X𝑛=𝑖) P(𝑖, 𝑗)

= ∑
𝑖∈E
E𝑘( ∑

𝑛∈N
1𝑛<τ𝑘 1X𝑛=𝑖) P(𝑖, 𝑗)

= ∑
𝑖∈E

∑
𝑛∈N

E𝑘(1𝑛<τ𝑘 1X𝑛=𝑖) P(𝑖, 𝑗) (Tonelli)

= ∑
𝑖∈E

∑
𝑛∈N

P𝑘(𝑛 < τ𝑘,X𝑛 = 𝑖) P(𝑖, 𝑗)

= ∑
𝑖∈E

∑
𝑛∈N

P𝑘(X𝑛 = 𝑖,X𝑛 ≠ 𝑘,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘) P(𝑖, 𝑗)

= ∑
𝑖∈E
𝑖≠𝑘

∑
𝑛∈N

P𝑘(X𝑛 = 𝑖,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘) P(𝑖, 𝑗)

or P(𝑖, 𝑗) = P(X𝑛+1 = 𝑗 ∣ X𝑛 = 𝑖,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘), d’où

= ∑
𝑖∈E
𝑖≠𝑘

∑
𝑛∈N

P𝑘(X𝑛+1 = 𝑗,X𝑛 = 𝑖,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘)

Pour 𝑖 ≠ 𝑘, l’événement {X𝑛 = 𝑖,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘} s’écrit aussi {τ𝑘 > 𝑛,X𝑛 = 𝑖}
donc ∪

𝑖≠𝑘
{X𝑛 = 𝑖,X𝑛−1 ≠ 𝑘,…,X1 ≠ 𝑘} = {τ𝑘 > 𝑛}, soit en permutant les sommes

(Tonelli) :

= ∑
𝑛∈N

P𝑘(X𝑛+1 = 𝑗,τ𝑘 > 𝑛)

= ∑
𝑛∈N

E𝑘(1X𝑛+1=𝑗 1τ𝑘>𝑛) = E𝑘( ∑
𝑛∈N

1X𝑛+1=𝑗 1τ𝑘>𝑛) (Tonelli)

= E𝑘( ∑
0≤𝑛<τ𝑘

1X𝑛+1=𝑗) = E𝑘( ∑
1≤𝑚≤τ𝑘

1X𝑚=𝑗) = ν𝑘𝑗 .
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La dernière égalité résulte du fait que, la chaîne étant récurrente irréductible, τ𝑘
est P𝑘-presque sûrement fini, on peut donc remplacer dans la somme, le terme
d’indice 𝑚 = 0 par le terme d’indice 𝑚 = τ𝑘 puisque les deux indicatrices valent
1𝑗=𝑘 P𝑘-presque sûrement.
c) La chaîne (X𝑛) étant irréductible, tous les états communiquent et enparticulier
il existe deux entiers 𝑛 et 𝑚 tels que P𝑛(𝑖,𝑘) > 0 et P𝑚(𝑘,𝑖) > 0. D’après b), ν𝑘
est invariant par P, donc aussi par toutes les puissances de P et comme d’après
a), ν𝑘𝑘 = 1 :

1 = ν𝑘𝑘 = ∑
𝑗∈E

ν𝑘𝑗 P𝑛(𝑗,𝑘) ≥ ν𝑘𝑖 P𝑛(𝑖,𝑘)

donc, tout 𝑖, ν𝑘𝑖 est fini et aussi strictement positif car

ν𝑘𝑖 = ∑
𝑗∈E

ν𝑘𝑗 P𝑚(𝑗, 𝑖) ≥ ν𝑘𝑘 P𝑚(𝑘,𝑖) ≥ P𝑚(𝑘,𝑖) > 0.

Lemme 4.6 (unicité) Soit X une chaîne de Markov homogène irréductible, de
matrice de transition P et λ une mesure invariante par P telle que λ𝑘 = 1. Alors
λ ≥ ν𝑘 où ν𝑘 est la mesure définie dans le lemme 4.5. Si en plus X est récurrente,
alors λ = ν𝑘.

DÉMONSTRATION. Écrivons l’équation d’invariance pour λ en isolant le terme
d’indice 𝑘 pour lequel λ𝑘 = 1 :

∀𝑗 ∈ E, λ𝑗 = ∑
𝑖∈E

λ𝑖 P(𝑖, 𝑗) = ∑
𝑖≠𝑘

λ𝑖 P(𝑖, 𝑗)+P(𝑘, 𝑗).

On itère le procédé en isolant à chaque fois le terme en λ𝑘 :

λ𝑗 = ∑
𝑖≠𝑘

( ∑
𝑖1≠𝑘

λ𝑖1 P(𝑖1, 𝑖)+P(𝑘,𝑖))P(𝑖, 𝑗)+P(𝑘, 𝑗)

= ∑
𝑖≠𝑘

∑
𝑖1≠𝑘

λ𝑖1 P(𝑖1, 𝑖)P(𝑖, 𝑗)+ ∑
𝑖≠𝑘

P(𝑘,𝑖)P(𝑖, 𝑗)+P(𝑘, 𝑗)

= …
= ∑

𝑖≠𝑘
∑
𝑖1≠𝑘

… ∑
𝑖𝑛≠𝑘

λ𝑖𝑛 P(𝑖𝑛, 𝑖𝑛−1)…P(𝑖1, 𝑖)P(𝑖, 𝑗)

+ ∑
𝑖≠𝑘

∑
𝑖1≠𝑘

… ∑
𝑖𝑛−1≠𝑘

P(𝑘,𝑖𝑛−1)P(𝑖𝑛−1, 𝑖𝑛−2)…P(𝑖1, 𝑖)P(𝑖, 𝑗)+⋯

+ ∑
𝑖≠𝑘

∑
𝑖1≠𝑘

P(𝑘,𝑖1)P(𝑖1, 𝑖)P(𝑖, 𝑗)+ ∑
𝑖≠𝑘

P(𝑘,𝑖)P(𝑖, 𝑗)+P(𝑘, 𝑗)
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on minore λ𝑗 en négligeant la première somme (la seule à contenir des termes
en λ) :

λ𝑗 ≥ ∑
𝑖≠𝑘

∑
𝑖1≠𝑘

… ∑
𝑖𝑛−1≠𝑘

P(𝑘,𝑖𝑛−1)P(𝑖𝑛−1, 𝑖𝑛−2)…P(𝑖1, 𝑖)P(𝑖, 𝑗)+⋯

+ ∑
𝑖≠𝑘

∑
𝑖1≠𝑘

P(𝑘,𝑖1)P(𝑖1, 𝑖)P(𝑖, 𝑗)+ ∑
𝑖≠𝑘

P(𝑘,𝑖)P(𝑖, 𝑗)+P(𝑘, 𝑗)

on interprète les produits grâce à la prop. 1.3, dans chaque somme on part de 𝑘
pour arriver à 𝑗 en évitant l’état 𝑘 entre-temps, d’où :

λ𝑗 ≥ P𝑘(X𝑛+1 = 𝑗,τ𝑘 ≥ 𝑛+1)+⋯+P𝑘(X2 = 𝑗,τ𝑘 ≥ 2)+P𝑘(X1 = 𝑗,τ𝑘 ≥ 1)

≥
𝑛+1
∑
𝑚=1

P𝑘(X𝑚 = 𝑗,τ𝑘 ≥ 𝑚) = E𝑘(
𝑛+1
∑
𝑚=1

1X𝑚=𝑗 1τ𝑘≥𝑚) = E𝑘(
min(𝑛+1,τ𝑘)

∑
𝑚=1

1X𝑚=𝑗).

On fait tendre 𝑛 vers +∞ : pour tout 𝑗 ≠ 𝑘, les termes d’indices 𝑚 = 0 et 𝑚 = τ𝑘
(sur {τ𝑘 < +∞}) de la dernière somme sont nuls, l’espérance croît donc vers ν𝑘𝑗
(Beppo-Levi) et comme λ𝑘 = ν𝑘𝑘 = 1, pour tout 𝑗, λ𝑗 ≥ ν𝑘𝑗 et l’inégalité λ ≥ ν𝑘
est établie.
Si on suppose la chaîne X récurrente, on sait d’après le lemme 4.5 que ν𝑘 est une
mesure invariante.Onposeμ = λ−ν𝑘, c’est également unemesure positive (cf. ci-
dessus), invariante comme différence de mesures invariantes. Mais comme λ𝑘 =
ν𝑘𝑘 = 1, μ𝑘 = 0 et comme la chaîne est irréductible tous les états communiquent :
pour tout état 𝑗, il existe un entier 𝑛 tel que P𝑛(𝑗,𝑘) > 0, μ est invariante par P𝑛,
d’où :

∀𝑗 ∈ E, 0 = μ𝑘 = ∑
𝑖∈E

μ𝑖 P𝑛(𝑖,𝑘) ≥ μ𝑗 P𝑛(𝑗,𝑘) donc μ𝑗 = 0 soit λ = ν𝑘.

Remarque : l’hypothèse λ mesure positive est essentielle pour l’unicité : la pro-
menade aléatoire symétrique sur Z est récurrente irréductible mais l’équation
λP = λ admet pour solutions les vecteurs ligne de la forme (λ𝑖 = A+B𝑖)𝑖∈Z (voir
exercice 3), c’est la condition λ ≥ 0 sur Z qui impose B = 0 et fait que cette chaîne
n’a que les mesures constantes comme mesures (positives) invariantes.
Il reste à voir si la masse totale de ces mesures invariantes (toutes proportion-
nelles) est finie ou non. Si elle l’est, il existera une probabilité invariante pour la
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chaîne. La masse totale de ν𝑘 est :

ν𝑘(E) = ∑
𝑗∈E

ν𝑘𝑗 = ∑
𝑗∈E
E𝑘( ∑

0≤𝑛<τ𝑘
1X𝑛=𝑗)

= E𝑘( ∑
0≤𝑛<τ𝑘

∑
𝑗∈E
1X𝑛=𝑗) (Tonelli)

= E𝑘( ∑
0≤𝑛<τ𝑘

1) = E𝑘(τ𝑘).

Définition 4.7 Pour tout état 𝑖 récurrent, le temps τ𝑖 de retour à 𝑖 est fini P𝑖-p.s.
et deux cas se présentent :

— soit τ𝑖 est aussi P𝑖-intégrable, on dit alors que 𝑖 est récurrent positif,
— soit τ𝑖 est non intégrable (E𝑖(τ𝑖) = +∞), on dit alors que 𝑖 est récurrent

nul.

Le théorème suivant établit que la récurrence positive (resp. nulle) est une pro-
priété de classe et donne une condition nécessaire et suffisante pour qu’une
chaîne de Markov homogène irréductible soit récurrente positive.

Théorème 4.8 Soit X une chaîne de Markov homogène irréductible, les trois
propositions suivantes sont équivalentes :
a) tous les états sont récurrents positifs,
b) il existe au moins un état récurrent positif,
c) X admet une probabilité invariante π.

Si l’une de ces conditions est réalisée,π est unique : ∀𝑖 ∈ E, π𝑖 =
1

E𝑖(τ𝑖)
⋅

DÉMONSTRATION. L’implication 𝑎 ⇒ 𝑏 est triviale.
Montrons 𝑏 ⇒ 𝑐 : Si 𝑘 est un état récurrent positif, E𝑘(τ𝑘) = ν𝑘(E) est fini, il
suffit de poser pour tout état 𝑖, π𝑖 = ν𝑘𝑖 /ν

𝑘(E) pour obtenir une probabilité π
invariante.
On a pour tout état 𝑘 récurrent positif, π𝑘 = 1/E𝑘(τ𝑘) ce qui établit la formule
finale.
Montrons 𝑐 ⇒ 𝑎 : soit π une probabilité invariante et 𝑘 un état quelconque. Il
existe au moins un état 𝑗 tel que π𝑗 > 0 et π, invariante par P, l’est aussi par toutes
ses puissances P𝑛 ; comme 𝑗 et𝑘 communiquent il existe un𝑛 tel que P𝑛(𝑗,𝑘) > 0
et π𝑘 = ∑𝑖∈Eπ𝑖P𝑛(𝑖,𝑘) ≥ π𝑗P𝑛(𝑗,𝑘) > 0. En divisant π par la constante π𝑘 > 0, on
obtient une nouvelle mesure λ invariante par P et telle que λ𝑘 = 1. On peut alors
appliquer le lemme d’unicité (4.6) à λ, d’où λ ≥ ν𝑘 et on en déduit que 𝑘 est
récurrent positif :

E𝑘(τ𝑘) = ∑
𝑖∈E

ν𝑘𝑖 ≤ ∑
𝑖∈E

λ𝑖 = ∑
𝑖∈E

π𝑖

π𝑘
=

1
π𝑘

< +∞ (π probabilité).
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Corollaire 4.9 Toute chaîne de Markov homogène irréductible à espace d’états
fini est récurrente positive : elle admet une unique probabilité invariante définie
par

∀𝑖 ∈ E, π𝑖 =
1

E𝑖(τ𝑖)
⋅

DÉMONSTRATION. Une chaîne de Markov homogène irréductible sur un espace
d’états fini est toujours récurrente (cf. prop. 3.10), elle admet donc des mesures
invariantes (théorème 4.4) qui sont nécessairement de masse totale finie, d’où
l’existence d’une probabilité invariante. Son expression est donnée par le théo-
rème précédent.

L’exemple classique de chaîne récurrente nulle est donné par la promenade
aléatoire symétrique (𝑝 = 𝑞) sur Z.
Comme exemple de chaîne récurrente positive sur un espace dénombrable on
peut citer la série de succès sur N avec pour tout 𝑖, 𝑝𝑖 = 𝑝, 𝑞𝑖 = 1−𝑝 (constants)
ou les promenades aléatoires surN avec barrière réfléchissante en 0 telles que
𝑝 < 𝑞.
Remarque : l’existence de mesures invariantes pour une chaîne irréductible
n’implique nullement que la chaîne soit récurrente : seule l’existence d’une
probabilité invariante permet de conclure à la récurrence (positive). Il est facile
de vérifier que les promenades aléatoires surZ telles que𝑝 > 𝑞 sont irréductibles,
transientes et qu’elles admettent pour mesures invariantes les mesures de la
forme :

∀𝑖 ∈ Z, λ𝑖 = A+B(
𝑞
𝑝

)
𝑖

A ≥ 0,B ≥ 0.

On remarquera aussi que dans cet exemple les mesures invariantes ne sont pas
toutes proportionnelles…

Définition4.10 SoitXune chaînedeMarkovhomogènedematrice de transitionP.
On appelle mesure réversible pour P toute mesure λ vérifiant

∀(𝑖, 𝑗) ∈ E2, λ𝑖 P(𝑖, 𝑗) = λ𝑗 P(𝑗, 𝑖)

La notion de mesure réversible, liée au retournement du temps (non traité ici,
voir [5]), peut faciliter la recherche d’une probabilité invariante : les équations
ci-dessus sont beaucoup plus faciles à résoudre que les équations d’invariance et
fournissent des mesures invariantes, comme le montre la proposition suivante.

Proposition 4.11 Toute mesure P-réversible est P-invariante.
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DÉMONSTRATION. Soit λ P-réversible, calculons (λP)𝑗 :

(λP)𝑗 = ∑
𝑖∈E

λ𝑖 P(𝑖, 𝑗) = ∑
𝑖∈E

λ𝑗 P(𝑗, 𝑖) = λ𝑗 ∑
𝑖∈E

P(𝑗, 𝑖) = λ𝑗.

Exemple d’application : considérons la promenade aléatoire sur N avec barrière
en 0, sa matrice de transition est donnée par

P(0,0) = 1−𝑟,P(0,1) = 𝑟, ∀𝑖 ≥ 1,P(𝑖, 𝑖 +1) = 𝑝 > 0,P(𝑖, 𝑖 −1) = 𝑞 = 1−𝑝 > 0.

Les équations de réversibilité s’écrivent

λ0𝑟 = λ1𝑞 ∀𝑖 ≥ 1, λ𝑖𝑝 = λ𝑖+1𝑞.

La résolution est immédiate, les mesures réversibles sont de la forme

∀𝑖 ≥ 1, λ𝑖 =
𝑟
𝑞

(
𝑝
𝑞
)
𝑖−1

λ0.

La chaîne est irréductible si et seulement si 𝑟 > 0 ; dans ce cas, si en plus 𝑝 < 𝑞,
on a une probabilité invariante et la chaîne est récurrente positive.

4.2.2 Période d’un état

Le fait qu’une chaîne de Markov homogène soit irréductible récurrente positive,
assure l’existence d’une unique probabilité invariante, mais pas la convergence
des matrices P𝑛 comme le montre l’exemple trivial suivant :

Si P = (0 1
1 0) , ∀𝑛 ∈N, P2𝑛 = I et P2𝑛+1 = P.

D’où la définition suivante :

Définition 4.12 On appelle période d’un état 𝑖 l’entier

𝑑(𝑖) = PGCD{𝑛 ≥ 1 ∣ P𝑛(𝑖, 𝑖) > 0}

Dans l’exemple ci-dessus les deux états sont de période 2. La période est une
propriété de classe :

Proposition 4.13 Tous les états d’une même classe ont même période.

22



DÉMONSTRATION. Soient 𝑖 et 𝑗 deux états communicants, montrons que 𝑑(𝑗)
divise 𝑑(𝑖), ce qui suffit par symétrie pour établir que 𝑑(𝑖) = 𝑑(𝑗). Comme 𝑖 et 𝑗
communiquent, il existe deux entiers 𝑙 et 𝑚 tels que P𝑙(𝑖, 𝑗) > 0 et P𝑚(𝑗, 𝑖) > 0.
Si 𝑛 est tel que P𝑛(𝑖, 𝑖) > 0, alors P𝑚+𝑛+𝑙(𝑗, 𝑗) ≥ P𝑚(𝑗, 𝑖)P𝑛(𝑖, 𝑖)P𝑙(𝑖, 𝑗) > 0, donc
𝑑(𝑗) divise 𝑚 + 𝑛 + 𝑙. Mais comme P𝑚+𝑙(𝑗, 𝑗) ≥ P𝑚(𝑗, 𝑖)P𝑙(𝑖, 𝑗) > 0, 𝑑(𝑗) divise
aussi 𝑚+𝑙 et par différence 𝑑(𝑗) divise 𝑛. 𝑑(𝑗) divise donc tous les entiers tels
que P𝑛(𝑖, 𝑖) > 0, donc aussi leur PGCD 𝑑(𝑖).

Définition 4.14 On dit qu’une classe est apériodique si et seulement si tous ses
états sont de période 1.

Remarque : Si pour un état 𝑖, P(𝑖, 𝑖) > 0, alors la classe de 𝑖 est apériodique.
Exemple de classe périodique : outre l’exemple trivial donné ci-dessus, les pro-
menades aléatoires sur Z, S𝑛 = S0+∑𝑛

𝑖=1 Y𝑖 où les Y𝑖 valent ±1 sont des exemples
typiques de chaînes irréductibles de période 2.

Proposition 4.15 Soit 𝑖 un état de période 1, alors
a) il existe un entierN(𝑖) tel que pour tout 𝑛 ≥ N(𝑖), P𝑛(𝑖, 𝑖) > 0 ;
b) pour tout état 𝑗 communiquant avec 𝑖, il existe un entierN(𝑖, 𝑗) tel que pour

tout 𝑛 ≥ N(𝑖, 𝑗), P𝑛(𝑖, 𝑗) > 0.

DÉMONSTRATION. a) Soit 𝒟(𝑖) = {𝑛 ≥ 1 ∣ P𝑛(𝑖, 𝑖) > 0}, cet ensemble est (presque)
un idéal : si 𝑛 et 𝑚 appartiennent à 𝒟(𝑖), pour tous 𝑝 et 𝑞 de N, 𝑝𝑛+𝑞𝑚 ap-
partient aussi à 𝒟(𝑖) ⁹. En effet, P𝑝𝑛+𝑞𝑚(𝑖, 𝑖) ≥ (P𝑛(𝑖, 𝑖))𝑝 (P𝑚(𝑖, 𝑖))𝑞 (produit de
matrices positives).
Montronsd’abordqu’il existe unentier𝑚 tel que𝑚 et𝑚+1 appartiennent à𝒟(𝑖) :
le PGCD de 𝒟(𝑖) valant 1, d’après l’égalité de Bezout il existe une suite finie ¹⁰
(𝑛1,…,𝑛𝑘) d’entiers de 𝒟(𝑖) et (𝑎1,…,𝑎𝑘) ∈ Z𝑘 tels que ∑𝑘

𝑗=1𝑎𝑗𝑛𝑗 = 1. On sépare
les 𝑎𝑗 selon leur signe en posant 𝑎+

𝑗 = max(𝑎𝑗,0) et 𝑎−
𝑗 = max(−𝑎𝑗,0), l’égalité

de Bezout s’écrit alors ∑𝑘
𝑗=1𝑎

+
𝑗 𝑛𝑗 = 1+∑𝑘

𝑗=1𝑎
−
𝑗 𝑛𝑗. En posant 𝑚 = ∑𝑘

𝑗=1𝑎
−
𝑗 𝑛𝑗 on a

𝑚+1 = ∑𝑘
𝑗=1𝑎

+
𝑗 𝑛𝑗 et ces deux entiers sont dans 𝒟(𝑖).

Il suffit maintenant de prendre N(𝑖) = 𝑚2 : pour tout 𝑛 ≥ 𝑚2 la division de 𝑛
par 𝑚 s’écrit : 𝑛 = 𝑞𝑚+𝑟 avec 0 ≤ 𝑟 < 𝑚 et 𝑞 ≥ 𝑚 > 𝑟, on peut donc écrire 𝑞
sous la forme 𝑞 = 𝑟 +𝑝 avec 𝑝 ∈N d’où 𝑛 = (𝑟 +𝑝)𝑚+𝑟 = 𝑟(𝑚+1)+𝑝𝑚 donc
𝑛 appartient à 𝒟(𝑖).

9. Si la propriété était vraie pour 𝑝 et 𝑞 dans Z,𝒟(𝑖) serait un « vrai » idéal de Z.
10. Le PGCD 𝑑𝑘(𝑖) de {𝑛 ≥ 1 ∣ 𝑛 ≤ 𝑘, P𝑛(𝑖, 𝑖) > 0} décroît vers 𝑑(𝑖) lorsque 𝑘→+∞, comme

c’est une suite d’entiers 𝑑𝑘(𝑖) = 𝑑(𝑖) pour 𝑘 assez grand.
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b) Si 𝑖 communique avec 𝑗, 𝑗 est également de période 1 et il existe un entier 𝑠 tel
que P𝑠(𝑖, 𝑗) > 0 ; en posant N(𝑖, 𝑗) = N(𝑗)+ 𝑠 on a pour tout 𝑙 ≥ N(𝑖, 𝑗), 𝑙 = 𝑛+𝑠
avec 𝑛 ≥ N(𝑗), d’où P𝑙(𝑖, 𝑗) ≥ P𝑠(𝑖, 𝑗)P𝑛(𝑗, 𝑗) > 0.

Pour les chaînes à espace d’états fini, la proposition précédente admet une forme
plus forte et d’énoncé plus simple :

Proposition 4.16 Soit X une chaîne de Markov homogène irréductible sur un
espace d’états fini et P samatrice de transition. SiX est apériodique, lesmatrices P𝑛
sont toutes strictement positives pour 𝑛 assez grand. Réciproquement, si il existe
un𝑛 pour lequel P𝑛 est strictement positive, toutes lesmatrices (P𝑚)𝑚≥𝑛 sont aussi
strictement positives et X est apériodique.

DÉMONSTRATION. Posons N =max(max𝑖∈EN(𝑖),max(𝑖,𝑗)∈E2 N(𝑖, 𝑗)). Si X est apé-
riodique, N est fini d’après la proposition précédente et tous les termes des
matrices P𝑛, sont strictement positifs pour 𝑛 ≥ N.
Réciproquement, si pour un entier 𝑛, P𝑛 est strictement positive, il est clair
que toutes les matrices (P𝑚)𝑚≥𝑛 le sont aussi (écrire le produit P𝑛+1 = P ⋅ P𝑛)
et le fait que P𝑛(𝑖, 𝑖) et P𝑛+1(𝑖, 𝑖) soient strictement positifs implique que 𝒟(𝑖)
contient 𝑛 et 𝑛+1, donc aussi leur différence, d’où 𝑑(𝑖) = 1 et la chaîne X est
apériodique.

Ce résultat ne s’étend évidemment pas aux chaînes irréductibles sur un espace
d’états dénombrable : penser à la chaîne des séries de succès, elle est apériodique
irréductible mais pour tout état 𝑖, P𝑛(𝑖, 𝑖) > 0 ⇒ 𝑛 ≥ 𝑖+1 car pour revenir en 𝑖 il
est nécessaire de passer par l’état 0.

4.2.3 Convergence en loi

Théorème 4.17 (Convergence en loi) Soit X une chaîne de Markov homogène
irréductible apériodique pour laquelle il existe une probabilité invariante π. Alors,
pour toute loi initiale λ, Pλ(X𝑛 = 𝑗) −−−−−→

𝑛→+∞
π𝑗. En particulier, pour tout état 𝑖,

P𝑛(𝑖, 𝑗) −−−−−→
𝑛→+∞

π𝑗.

La démonstration proposée ici repose sur un argument de couplage emprunté
à [5].

DÉMONSTRATION. Soit X la chaîne de Markov homogène de matrice de transi-
tion P et de loi initiale λ. On considère une seconde chaîne de Markov homogène
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Y de même matrice de transition P mais de loi initiale π invariante par P, in-
dépendante de X ; une telle chaîne Y existe : pour construire le couple (X,Y)
il suffit de se placer sur l’espace produit EN ×EN muni de la tribu produit des
tribus cylindriques et de la probabilité produit Pλ×Pπ. Soit (W𝑛) = (X𝑛,Y𝑛) la
chaîne « couplée », c’est une chaîne de Markov homogène de loi initiale λ×π et
de matrice de transition définie par P̃((𝑖,𝑘)(𝑗, 𝑙)) = P(𝑖, 𝑗)P(𝑘,𝑙).
Cette chaîne est irréductible, en effet pour tout 𝑛, P̃𝑛((𝑖,𝑘)(𝑗, 𝑙)) = P𝑛(𝑖, 𝑗)P𝑛(𝑘,𝑙)
(indépendance) et d’après la proposition 4.15, ce produit est strictement positif
pour 𝑛 assez grand car X est irréductible apériodique (Y qui a même matrice de
transition l’est donc aussi).
Il est immédiat de vérifier que laprobabilité π̃définie surE×Epar π̃(𝑖,𝑘) = π𝑖π𝑘 est
invariante par P̃. D’après le théorème 4.8, la chaîne couple W est donc récurrente
positive.
Fixons un état 𝑎 quelconque de E. Le temps d’atteinte T de l’état {𝑎}× {𝑎} par la
chaîne récurrente W est donc fini P̃λ×π-p.s. On définit maintenant une nouvelle
suite (Z𝑛) en remplaçant X𝑛 par Y𝑛 à partir l’instant T :

Z𝑛(ω) = {
X𝑛(ω) sur {T(ω) > 𝑛}
Y𝑛(ω) sur {T(ω) ≤ 𝑛}

Z = (Z𝑛) est une chaîne de Markov homogène de loi initiale λ et de matrice de
transition P (calculer P(Z𝑛+1 = 𝑗 ∣ Z𝑛 = 𝑖∩…∩Z0 = 𝑖0) en distinguant trois cas
selon que Z𝑛 passe pour la première fois par {𝑎} après l’instant 𝑛, à l’instant 𝑛
ou avant).
X et Z sont donc deux chaînes de Markov homogènes de même loi initiale λ et de
même matrice de transition P, elles ont donc même loi (cf. prop. 1.3). Calculons
la différence

Pλ(X𝑛 = 𝑗)−π𝑗 = P̃λ×π(X𝑛 = 𝑗)− P̃λ×π(Y𝑛 = 𝑗) = P̃λ×π(Z𝑛 = 𝑗)− P̃λ×π(Y𝑛 = 𝑗)

endécomposant sur {T > 𝑛} et {T ≤ 𝑛}pour utiliser le fait queZ𝑛 = Y𝑛 sur {T ≤ 𝑛} :

Pλ(X𝑛 = 𝑗)−π𝑗 = P̃λ×π(Z𝑛 = 𝑗,T > 𝑛)+ P̃λ×π(Z𝑛 = 𝑗,T ≤ 𝑛)
− P̃λ×π(Y𝑛 = 𝑗,T > 𝑛)− P̃λ×π(Y𝑛 = 𝑗,T ≤ 𝑛)

= P̃λ×π(Z𝑛 = 𝑗,T > 𝑛)− P̃λ×π(Y𝑛 = 𝑗,T > 𝑛)

Finalement, ||Pλ(X𝑛 = 𝑗)−π𝑗
|| = ||P̃λ×π(Z𝑛 = 𝑗,T > 𝑛)− P̃λ×π(Y𝑛 = 𝑗,T > 𝑛)||estma-

jorée par P̃λ×π(T > 𝑛) qui décroît vers P̃λ×π(T = +∞) = 0 lorsque 𝑛 croît vers +∞.
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4.2.4 Théorème ergodique

Théorème 4.18 Soit X une chaîne de Markov homogène irréductible de loi ini-
tiale λ quelconque. Alors ¹¹ :

∀𝑗 ∈ E,
1
𝑛

𝑛
∑
𝑘=1

1X𝑘=𝑗
Pλ−p.s.−−−−−→
𝑛→+∞

1
E𝑗(τ𝑗)

De plus, si X est récurrente positive de probabilité invariante π, pour toute fonc-
tion 𝑓 E →R bornée ¹² :

1
𝑛

𝑛
∑
𝑘=1

𝑓(X𝑘)
Pλ−p.s.−−−−−→
𝑛→+∞

∑
𝑖∈E

π𝑖𝑓(𝑖) = Eπ(𝑓(X0)).

DÉMONSTRATION. Si X est transiente, chaque état 𝑗 n’est visité qu’un nombre
Pλ-p.s. fini de fois et le temps τ𝑗 d’atteinte de chaque état 𝑗 charge +∞ donc
E𝑗(τ𝑗) = +∞, on donc bien

∀𝑗 ∈ E
1
𝑛

𝑛
∑
𝑘=1

1X𝑘=𝑗
Pλ−p.s.−−−−−→
𝑛→+∞

0 =
1

E𝑗(τ𝑗)

Supposons maintenant X récurrente. L’idée consiste à appliquer la loi forte des
grands nombres à la suite de variables {τ𝑗 ∘θτ

𝑙
𝑗 }𝑙≥1 qui sont indépendantes et de

même loi pour la probabilité Pλ. Rappelons que les instants de passage par 𝑗
sont donnés par τ1𝑗 = τ𝑗 et τ𝑙+1𝑗 = τ𝑙𝑗 +τ𝑗 ∘θτ

𝑙
𝑗 .

Notons V𝑛
𝑗 la variable aléatoire nombre de visites à l’état 𝑗 entre les instants 0

et 𝑛 : V𝑛
𝑗 = ∑𝑛

𝑘=1 1X𝑘=𝑗. Il est clair que V𝑛
𝑗 ≤ 𝑛, ses valeurs sont données par :

V𝑛
𝑗 = 0 sur {τ𝑗 > 𝑛}

V𝑛
𝑗 = 𝑚 sur {τ𝑚𝑗 ≤ 𝑛 < τ𝑚+1

𝑗 } = {
𝑚−1
∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗 ≤ 𝑛 <

𝑚
∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗} (1 ≤ 𝑚 ≤ 𝑛).

Sur l’ensemble {V𝑛
𝑗 ≥ 1} = {τ𝑗 ≤ 𝑛} on a donc :

V𝑛𝑗 −1

∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗 ≤ 𝑛 <

V𝑛𝑗
∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗

11. On fait la convention 1/∞= 0 lorsque 𝑗 est transient ou récurrent nul.
12. Le résultat peut se généraliser à 𝑓 π-intégrable (voir [1]).
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ou en divisant par V𝑛
𝑗

α𝑛(ω) =
1
V𝑛
𝑗

V𝑛𝑗 −1

∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗 ≤

𝑛
V𝑛
𝑗

<
1
V𝑛
𝑗

V𝑛𝑗
∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗 = β𝑛(ω). (6)

Les variables {τ𝑗 ∘θτ
𝑙
𝑗 }𝑙≥1 étant indépendantes et de même loi ¹³ pour la probabi-

lité Pλ, d’après la loi forte des grands nombres, pour Pλ-presque tout ω

γ𝑛(ω) =
1
𝑛

𝑛
∑
𝑙=0

τ𝑗 ∘θτ
𝑙
𝑗 −−−−−→
𝑛→+∞

E𝑗(τ𝑗).

Ceci vaut que τ𝑗 soit intégrable ou non : si (Y𝑙) est une suite de variables positives,
indépendantes, de même loi, non intégrables, 1

𝑛 ∑𝑛
𝑙=1 Y𝑙

P−p.s.−−−−−→
𝑛→+∞

+∞ (appliquer
la loi forte des grands nombres aux variables tronquées Y𝑘𝑙 =min(Y𝑙,𝑘) et faire
tendre 𝑘 vers +∞).
Lorsque𝑛 tend vers+∞,V𝑛

𝑗 (ω) croît vers le nombre totalN𝑗(ω) de visites à l’état 𝑗
qui vaut +∞ presque sûrement : la chaîne étant récurrente irréductible, pour
tout 𝑖, P𝑖(N𝑗 = +∞) = 1 (cf. proposition 3.8) donc Pλ(N𝑗 = +∞) = 1. La suite
V𝑛
𝑗 (ω) croît (au sens large) vers +∞ Pλ-p.s., quitte à sauter des termes (ceux

d’indice 𝑛 tels que V𝑛
𝑗 = V𝑛−1

𝑗 ) les deux suites α𝑛(ω) et β𝑛(ω) sont des sous-suites
de γ𝑛(ω) et ont donc même limite que γ𝑛(ω) soit E𝑗(τ𝑗).
Enfin, τ𝑗 étant finie Pλ-p.s., l’équation (6) vérifiée sur {τ𝑗 ≤ 𝑛}, est vraie pour
Pλ-presque tout ω au moins pour 𝑛 assez grand (dépendant de ω) et le quotient
𝑛/V𝑛

𝑗 , encadré par α𝑛(ω) et β𝑛(ω) converge donc Pλ-p.s. vers E𝑗(τ𝑗). En passant
aux inverses on a le résultat annoncé dans la première partie du théorème.
Étudions maintenant la limite de 1

𝑛 ∑𝑛
𝑘=1 𝑓(X𝑘) pour 𝑓 bornée par M dans le cas

où X admet une probabilité invariante π. Pour cela transformons la somme

1
𝑛

𝑛
∑
𝑘=1

𝑓(X𝑘) =
1
𝑛

𝑛
∑
𝑘=1

𝑓(X𝑘)∑
𝑖∈E
1X𝑘=𝑖

=
1
𝑛

𝑛
∑
𝑘=1

∑
𝑖∈E

𝑓(𝑖)1X𝑘=𝑖

=
1
𝑛 ∑

𝑖∈E
𝑓(𝑖)

𝑛
∑
𝑘=1

1X𝑘=𝑖

=
1
𝑛 ∑

𝑖∈E
𝑓(𝑖)V𝑛

𝑖 = ∑
𝑖∈E

𝑓(𝑖)
V𝑛
𝑖

𝑛

13. Le fait que pour 𝑙 = 0, τ𝑗 ait une loi différente (la chaîne ne part pas de 𝑗) n’affecte pas la
limite puisque 1

𝑛τ𝑗 →0 lorsque 𝑛→+∞.
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Majorons la différence

||
1
𝑛

𝑛
∑
𝑘=1

𝑓(X𝑘)− ∑
𝑖∈E

𝑓(𝑖)π𝑖
|| = ||∑

𝑖∈E
𝑓(𝑖)(

V𝑛
𝑖

𝑛
−π𝑖)|| ≤ M∑

𝑖∈E

||
V𝑛
𝑖

𝑛
−π𝑖

||

Chacun des termes de cette dernière somme tend vers 0 d’après la première
partie du théorème ergodique, mais E n’est pas supposé fini, soit donc F une
partie finie de E :

∑
𝑖∈E

||
V𝑛
𝑖

𝑛
−π𝑖

|| ≤ ∑
𝑖∈F

||
V𝑛
𝑖

𝑛
−π𝑖

||+ ∑
𝑖∉F

V𝑛
𝑖

𝑛
+ ∑

𝑖∉F
π𝑖

≤ ∑
𝑖∈F

||
V𝑛
𝑖

𝑛
−π𝑖

||+1− ∑
𝑖∈F

V𝑛
𝑖

𝑛
+ ∑

𝑖∉F
π𝑖 car ∑

𝑖∈E

V𝑛
𝑖

𝑛
= 1

≤ ∑
𝑖∈F

||
V𝑛
𝑖

𝑛
−π𝑖

||+ ∑
𝑖∉F

π𝑖 + ∑
𝑖∈F

π𝑖 − ∑
𝑖∈F

V𝑛
𝑖

𝑛
+ ∑

𝑖∉F
π𝑖 (π probabilité)

≤ 2∑
𝑖∈F

||
V𝑛
𝑖

𝑛
−π𝑖

||+2∑
𝑖∉F

π𝑖

Pour majorer ∑𝑖∈E |V𝑛
𝑖 /𝑛−π𝑖| par ε, il suffit de choisir pour F une partie finie

de E assez grande pour que ∑𝑖∉Fπ𝑖 soit plus petite que ε/4, la première somme
(finie) est alors majorée par ε/4 pour 𝑛 assez grand.

Le théorème ergodique complète au moins partiellement l’information donnée
par le théorèmede convergence en loi. Comme les variablesV𝑛

𝑖 /𝑛 sont comprises
entre 0 et 1, on peut leur appliquer le théorème de Lebesgue et

E𝑖
V𝑛
𝑗

𝑛
= E𝑖(

1
𝑛

𝑛
∑
𝑘=1

1X𝑘=𝑗) =
1
𝑛

𝑛
∑
𝑘=1

P𝑖(X𝑘 = 𝑗) =
1
𝑛

𝑛
∑
𝑘=1

P𝑘(𝑖, 𝑗) −−−−→
𝑛→∞

1
E𝑗(τ𝑗)

⋅

pour toute chaîne de Markov homogène irréductible. Sous des hypothèses plus
faibles (on ne suppose la chaîne ni récurrente ni apériodique) on obtient un
résultat plus faible aussi : la convergence des moyennes de Césaro des P𝑛(𝑖, 𝑗)
au lieu de celle de la suite des P𝑛(𝑖, 𝑗). On a établi le résultat suivant :

Proposition 4.19 Les moyennes de Césaro des matrices P𝑛 d’une chaîne de Mar-
kov homogène irréductible convergent :

∀(𝑖, 𝑗) ∈ E×E
1
𝑛

𝑛
∑
𝑘=1

P𝑘(𝑖, 𝑗) −−−−→
𝑛→∞

1
E𝑗(τ𝑗)

avec la convention 1/∞ = 0 pour les états 𝑗 transients ou récurrents nuls.
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5 Propriétés algébriques des chaînes deMarkov
à espace d’états fini

Dans cette section nous supposons E fini et nous abordons l’étude de la conver-
gence des matrices P𝑛 sous un angle purement algébrique, celui des valeurs
propres de P.

Définition 5.1 On appelle matrice stochastique ou matrice de Markov, toute
matrice à termes positifs ou nuls dont la somme de chaque ligne vaut 1.

Proposition 5.2 Soit P une matrice stochastiqueN×N.
a) P admet la valeur propre 1 pour le vecteur propre colonne ¹⁴ 𝑡(1,1,…,1) ;
b) les valeurs propres de P sont toutes de module inférieur ou égal à 1 ;
c) plus précisément, elles sont toutes dans la réunion des disques de centre P(𝑖, 𝑖)

et de rayon 1−P(𝑖, 𝑖) (1 ≤ 𝑖 ≤ N).

DÉMONSTRATION. a) traduit le fait que la somme des colonnes vaut 1.
b) Soit λ une valeur propre (complexe) de P et 𝑣 le vecteur propre associé, de

composantes (𝑣1,𝑣2,…,𝑣N). Considérons la composante de module maxi-
mum de 𝑣 : |𝑣𝑖| =max1≤𝑗≤N |𝑣𝑗|. Le produit P𝑣 = λ𝑣 s’écrit pour cette compo-
sante :

𝑛
∑
𝑗=1

P(𝑖, 𝑗)𝑣𝑗 = λ𝑣𝑖 d’où |λ| |𝑣𝑖| ≤
𝑛
∑
𝑗=1

P(𝑖, 𝑗) |𝑣𝑗| ≤ |𝑣𝑖|
𝑛
∑
𝑗=1

P(𝑖, 𝑗) = |𝑣𝑖|

et |λ| ≤ 1 (𝑣, vecteur propre, n’est pas nul donc 𝑣𝑖 ≠ 0).
c) On réécrit l’égalité P𝑣 = λ𝑣 pour la composante 𝑣𝑖 de module maximum :

λ𝑣𝑖 =
𝑛
∑
𝑗=1

P(𝑖, 𝑗)𝑣𝑗 ⟺ (λ−P(𝑖, 𝑖))𝑣𝑖 = ∑
𝑗≠𝑖

P(𝑖, 𝑗)𝑣𝑗

En passant aux modules on obtient :

|λ−P(𝑖, 𝑖)| |𝑣𝑖| ≤ ∑
𝑗≠𝑖

P(𝑖, 𝑗) |𝑣𝑗| ≤ |𝑣𝑖|∑
𝑗≠𝑖

P(𝑖, 𝑗) = |𝑣𝑖| (1−P(𝑖, 𝑖))

comme |𝑣𝑖| ≠ 0, il existe donc un 𝑖 pour lequel |λ−P(𝑖, 𝑖)| ≤ 1−P(𝑖, 𝑖), ce qui
établit le résultat annoncé.

14. On notera 𝑡𝑣 et 𝑡P les transposés d’un vecteur 𝑣 ou d’une matrice P.
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Application :

OC
1

Si tous les termes diagonaux de P
sont strictement positifs, les valeurs
propres de P sont toutes dans le
disque de centre C =min𝑖 P(𝑖, 𝑖) > 0
et de rayon 1−min𝑖 P(𝑖, 𝑖) ; en par-
ticulier 1 est l’unique valeur propre
de module 1 de P (éventuellement
multiple).

Si P est diagonalisable, si 1 est sa seule valeur propre demodule 1 et si 1 est valeur
propre simple, il est facile de montrer que

∀(𝑖, 𝑗) ∈ E×E P𝑛(𝑖, 𝑗) −−−−→
𝑛→∞

π𝑗 indépendante de 𝑖.

En effet dans ce cas la suite des matrices diagonales D𝑛 converge vers une ma-
trice D∞ de rang 1, donc P𝑛 converge ¹⁵ vers P∞ = QD∞Q−1 où Q est une matrice
inversible, donc P∞ est également de rang 1 et comme toutes ses lignes ont
même somme, toutes ses lignes doivent être égales (à π).
Il ne faudrait pas croire que toute matrice stochastique est diagonalisable, voici
un exemple de matrice stochastique 3×3 triangulaire non diagonalisable :

P =
⎛

⎝

½ 𝑎 ½−𝑎
0 ½ ½
0 0 1

⎞

⎠

Les valeurs propres sont ½, ½ et 1. Si 𝑎 ≠ 0, le
sous-espace propre associé à ½ est de dimen-
sion 1 et P n’est donc pas diagonalisable.

Nous allons maintenant donner deux démonstrations simplifiées de l’existence
d’une probabilité invariante dans le cas où l’espace d’états E est fini.

Proposition 5.3 Toute chaîne de Markov homogène sur un espace d’états fini
admet au moins une probabilité invariante.

Voici une première démonstration algébrique :

DÉMONSTRATION. une probabilité 𝑚 est invariante si et seulement si 𝑚P = 𝑚
soit en transposant 𝑡P 𝑡𝑚 = 𝑡𝑚 c’est-à-dire 𝑡𝑚 est un vecteur propre de 𝑡P pour la
valeur propre 1. Or 1 est toujours valeur propre de P (cf. proposition précédente)
et P et 𝑡P ont même polynôme caractéristique donc mêmes valeurs propres ;
ceci assure l’existence d’un vecteur ligne 𝑚 tel que 𝑚P = 𝑚, mais pas que les
composantes de 𝑚 soient toutes positives ! L’existence d’un vecteur 𝑚 positif
invariant découle du lemme suivant. Il est ensuite facile de le normer (∑𝑖∈E𝑚𝑖 =
1) pour en faire une probabilité.

15. Lespassages à la limiteneposentpasdeproblèmepuisqu’il s’agit de combinaisons linéaires
finies.
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Lemme 5.4 (Perron-Frobenius) Soit P une matrice stochastique N×N, λ une
valeur propre (réelle ou complexe) de module 1 de sa transposée 𝑡P et 𝑣 le vec-
teur propre (réel ou complexe) associé : 𝑡P𝑣 = λ𝑣. Alors, le vecteur colonne𝑤 =
𝑡(|𝑣1|,…, |𝑣N|), est vecteur propre de 𝑡P pour la valeur propre 1.

DÉMONSTRATION. Calculons la 𝑖-ème composante α𝑖 du produit (𝑡P−I)𝑤 :

α𝑖 = ∑
𝑗∈E

𝑡P(𝑖, 𝑗)𝑤𝑗 −𝑤𝑖 = ∑
𝑗∈E

𝑡P(𝑖, 𝑗)|𝑣𝑗|− |𝑣𝑖| ≥ ||∑
𝑗∈E

𝑡P(𝑖, 𝑗)𝑣𝑗||− |𝑣𝑖| = 0

car ∑𝑗∈E
𝑡P(𝑖, 𝑗)𝑣𝑗 = λ𝑣𝑖 et |λ| = 1. Il reste à remarquer que la somme des α𝑖 est

nulle :

∑
𝑖∈E

α𝑖 = ∑
𝑖∈E

(∑
𝑗∈E

𝑡P(𝑖, 𝑗)𝑤𝑗 −𝑤𝑖) = ∑
𝑗∈E

𝑤𝑗 ∑
𝑖∈E

𝑡P(𝑖, 𝑗)− ∑
𝑖∈E

𝑤𝑖 = ∑
𝑗∈E

𝑤𝑗 − ∑
𝑖∈E

𝑤𝑖 = 0

donc les α𝑖 sont tous nuls.

Donnons maintenant une démonstration topologique de la proposition 5.3.

DÉMONSTRATION. Une probabilité sur un ensemble E à N éléments est définie
par les valeurs des probabilités de chaque singleton, c’est donc un vecteur de RN
dont toutes les composantes sont comprises entre 0 et 1 et dont la somme vaut 1.
Autrement dit, l’ensemble ℳ1(E) de ces probabilités est l’intersection de l’hyper-
cube [0,1]N et de l’hyperplan affined’équation∑N

𝑖=1𝑥𝑖 = 1, c’est doncun compact
de l’e.v. normé RN.
On dit qu’une suite (μ𝑛) de probabilités sur E (fini) converge vers μ, si et seule-
ment si, pour tout singleton {𝑖} de E, la suite numérique μ𝑛({𝑖}) converge vers
μ({𝑖}) ¹⁶. La topologie ainsi définie surℳ1(E) est équivalente à celle deRN (conver-
gence des composantes), ℳ1(E) est donc compact.
Soit μ0 une probabilité quelconque sur E, pour tout 𝑚 deN, μ0P𝑚 est également
une probabilité sur E, considérons la suite définie par :

∀𝑛 ≥ 1 μ𝑛 =
1
𝑛

(μ0 +μ0P+⋯+μ0P𝑛−1)

Les μ𝑛 sont elles aussi des probabilités sur E et la compacité de ℳ1(E) permet
d’extraire de la suite (μ𝑛) une sous-suite convergente (μ𝑛𝑘 ) ; pour tout 𝑘 :

μ𝑛𝑘P−μ𝑛𝑘 =
1
𝑛𝑘

(μ0P𝑛𝑘 −μ0) −−−−−→𝑘→+∞
0

16. Noter que cette définition équivaut à la convergence faible (ou convergence en loi) de (μ𝑛)
vers μ.
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car pour tout singleton {𝑖} de E, μ0P𝑛𝑘 ({𝑖}) ≤ 1. La limite μ de la sous-suite (μ𝑛𝑘 )
vérifie donc μP = μ, c’est une probabilité invariante.

L’étude qui suit précise la nature des valeurs propres de module 1 de P.
Rappelons tout d’abord que P et 𝑡P ont mêmes valeurs propres et que pour tout λ
les noyaux de P−λI et de sa transposée 𝑡P−λI ont même dimension.

Lemme 5.5 Soit X une chaîne de Markov homogène irréductible finie (donc
récurrente positive), apériodique, de matrice de transition P. P n’admet aucune
valeur propre de module 1 autre que 1. Le sous-espace propre pour λ = 1 est de
dimension 1.

Remarque : le résultat du lemme peut être légèrement amélioré ; sous les mêmes
hypothèses, il résulte du théorème de Perron-Frobenius que la valeur propre λ =
1 est racine simple du polynôme caractéristique (voir [6] théorème 1.1 p. 3).

DÉMONSTRATION. Soit π la probabilité invariante de la chaîne ¹⁷ ; si 𝑣 est un
vecteur propre (complexe) de 𝑡P pour la valeur propre λ = 𝑒𝑖θ de module 1,
𝑚 = 𝑡𝑣 vérifie 𝑚P = 𝑒𝑖θ𝑚 et 𝑚P𝑛 = 𝑒𝑛𝑖θ𝑚, soit pour la composante 𝑗 :

(𝑚P𝑛)𝑗 = ∑
𝑖∈E

𝑚𝑖P𝑛(𝑖, 𝑗) −−−−−→𝑛→+∞
∑
𝑖∈E

𝑚𝑖π𝑗 = π𝑗 ∑
𝑖∈E

𝑚𝑖. (7)

mais 𝑚 a au moins une composante non nulle et pour 𝑚𝑗 ≠ 0, (𝑚P𝑛)𝑗 = 𝑒𝑛𝑖θ𝑚𝑗
n’a de limite que si θ = 0 (mod 2π), ce qui impose λ = 1. De plus, pour λ = 1,
𝑚𝑗 = (𝑚P𝑛)𝑗 et (7) implique que𝑚 est un vecteur ligne proportionnel àπ, le sous-
espace propre de 𝑡P pour λ = 1 est donc de dimension 1, celui de P aussi.

Le lemme suivant précise la structure d’une classe récurrente périodique.

Lemme 5.6 Soit X une chaîne de Markov homogène irréductible finie de matrice
de transition P et de période 𝑑 ≥ 2. Alors la chaîne de matrice P𝑑 n’est pas irréduc-
tible : elle possède 𝑑 classes C0,C1,…,C𝑑−1 telles que si X𝑘 ∈ C𝑟, alors X𝑘+1 ∈ C𝑟+1
(avec la convention C𝑑 = C0).

Exemple : la promenade aléatoire à barrière réfléchissante sur E = {0,1,…,N},
est de période 𝑑 = 2 et C0 = {𝑖 ∈ E ∣ 𝑖 pair}, C1 = {𝑖 ∈ E ∣ 𝑖 impair}.

DÉMONSTRATION. Soit 𝑖 un état fixé de E. Remarquons que si 𝑛 et 𝑛′ sont deux
entiers vérifiantP𝑛(𝑖, 𝑗) > 0 etP𝑛

′
(𝑖, 𝑗) > 0, alors𝑛 ≡ 𝑛′ (mod 𝑑) : en effet, comme

𝑖 et 𝑗 communiquent, il existe un entier 𝑚 tel que P𝑚(𝑗, 𝑖) > 0 donc P𝑛+𝑚(𝑖, 𝑖) ≥

17. On utilise ici le résultat du corollaire 4.9 page 21.
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P𝑛(𝑖, 𝑗)P𝑚(𝑗, 𝑖) > 0 et de même P𝑛
′+𝑚(𝑖, 𝑖) > 0, donc 𝑑 divise à la fois 𝑛+𝑚 et

𝑛′ +𝑚 donc aussi leur différence 𝑛−𝑛′.
Posons C𝑟 = {𝑗 ∈ E ∣ P𝑛(𝑖, 𝑗) > 0 ⇒ 𝑛 ≡ 𝑟 (mod 𝑑)} (0 ≤ 𝑟 < 𝑑) et montrons que
C0,C1,…,C𝑑−1 sont les classes de la chaîne de matrice P𝑑.
Montrons d’abord que deux états d’une même classe C𝑟 communiquent pour
P𝑑. Soient 𝑗 et 𝑘 deux états de C𝑟 ; ils communiquent avec 𝑖 donc

∃𝑛𝑗 P𝑛𝑗 (𝑖, 𝑗) > 0 et ∃𝑛𝑘 P𝑛𝑘 (𝑖,𝑘) > 0 avec 𝑛𝑗 ≡ 𝑛𝑘 ≡ 𝑟 (mod 𝑑)
∃𝑚𝑗 P𝑚𝑗 (𝑗, 𝑖) > 0 et ∃𝑚𝑘 P𝑚𝑘 (𝑘,𝑖) > 0

d’oùP𝑛𝑗+𝑚𝑗 (𝑖, 𝑖) > 0 etP𝑛𝑘+𝑚𝑘 (𝑖, 𝑖) > 0doncpar définition de𝑑 = 𝑑(𝑖),𝑛𝑗+𝑚𝑗 ≡ 0
(mod 𝑑)et𝑛𝑘+𝑚𝑘 ≡ 0 (mod 𝑑)et comme𝑛𝑗 ≡ 𝑛𝑘 ≡ 𝑟 (mod 𝑑),𝑚𝑗 ≡ 𝑚𝑘 ≡ 𝑑−𝑟
(mod 𝑑). Mais on a aussi P𝑚𝑗+𝑛𝑘 (𝑗,𝑘) ≥ P𝑚𝑗 (𝑗, 𝑖)P𝑛𝑘 (𝑖,𝑘) > 0 et 𝑚𝑗 +𝑛𝑘 = (𝑑−
𝑟)+𝑟 ≡ 0 (mod 𝑑) donc 𝑚𝑗 +𝑛𝑘 est un multiple de 𝑑. Par symétrie il en va de
même de 𝑚𝑚 +𝑛𝑗, donc 𝑗 et 𝑘 communiquent en un nombre d’étapes multiple
de 𝑑.
Soient maintenant 𝑗 ∈ C𝑟 et 𝑘 ∈ C𝑠 avec 𝑟 ≢ 𝑠 (mod 𝑑). Montrons par l’absurde
que 𝑗 et 𝑘 ne communiquent pas pour P𝑑 : supposons qu’il existe 𝑛 ≥ 1 et 𝑚 ≥ 1
tels que P𝑛𝑑(𝑗,𝑘) > 0 et P𝑚𝑑(𝑘, 𝑗) > 0. Comme 𝑖 communique avec 𝑗, il existe 𝑙
tel que P𝑙(𝑖, 𝑗) > 0 et comme 𝑗 ∈ C𝑟, on a 𝑙 ≡ 𝑟 (mod 𝑑), mais alors P𝑙+𝑛𝑑(𝑖,𝑘) ≥
P𝑙(𝑖, 𝑗)P𝑛𝑑(𝑗,𝑘) > 0 donc 𝑙 ≡ 𝑙+𝑛𝑑 ≡ 𝑠 (mod 𝑑) ce qui est incompatible avec
𝑙 ≡ 𝑟 (mod 𝑑).
Prenons maintenant 𝑗 dans C𝑟 et 𝑘 dans C𝑠 tels que P(𝑗,𝑘) > 0 et montrons que
𝑠 ≡ 𝑟 +1 (mod 𝑑) ce qui terminera la démonstration. Comme 𝑗 communique
avec 𝑖, on a vu ci-dessus qu’il existe un entier 𝑙 tel queP𝑙(𝑖, 𝑗) > 0 et 𝑙 ≡ 𝑟 (mod 𝑑).
Mais P𝑙+1(𝑖,𝑘) ≥ P𝑙(𝑖, 𝑗)P(𝑗,𝑘) > 0 donc 𝑙+1 ≡ 𝑠 (mod 𝑑) et 𝑠 ≡ 𝑟 +1 (mod 𝑑).

Lemme 5.7 Soit X une chaîne de Markov homogène irréductible finie, de matrice
de transition P et de période 𝑑 ≥ 2 ; les racines 𝑑-ièmes de l’unité sont valeurs
propres de P et P n’a pas d’autre valeur propre de module 1. Le sous-espace propre
pour chacune des racines 𝑑-ièmes de l’unité est de dimension 1.

Remarque : le résultat du lemme peut être légèrement amélioré ; en fait chacune
des racines 𝑑-ièmes de l’unité est racine simple du polynôme caractéristique
(voir [6] théorème 1.15 p. 22).

DÉMONSTRATION. Chaque classe C𝑟 étant irréductible pour P𝑑 et finie, elle est
récurrente positive et admet donc une unique probabilité π(𝑟) invariante par P𝑑
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(cf. corollaire 4.9). D’après le lemme précédent,π(𝑟)P est portée par la classeC𝑟+1,
π(𝑟)P est également invariante par P𝑑 et donc π(𝑟)P = π(𝑟+1) (unicité).
Posons λ = exp 2𝑖π

𝑑 , en combinant les égalités π(𝑟)P = π(𝑟+1) on obtient

(
𝑑−1
∑
𝑟=0

π(𝑟))P =
𝑑−1
∑
𝑟=0

π(𝑟)P =
𝑑−1
∑
𝑟=0

π(𝑟+1) =
𝑑−1
∑
𝑟=0

π(𝑟) (π𝑑 = π0)

∀𝑘 (1 ≤ 𝑘 ≤ 𝑑−1), (
𝑑−1
∑
𝑟=0

λ𝑘𝑟π(𝑟))P =
𝑑−1
∑
𝑟=0

λ𝑘𝑟π(𝑟)P =
𝑑−1
∑
𝑟=0

λ𝑘𝑟π(𝑟+1) = λ−𝑘
𝑑−1
∑
𝑟=0

λ𝑘𝑟π(𝑟)

ce qui montre que pour tout 0 ≤ 𝑘 ≤ 𝑑−1, le vecteur ligne 𝑣𝑘 = ∑𝑑−1
𝑟=0 λ𝑘𝑟π(𝑟) est

vecteur propre « à gauche » pour la valeur propre λ−𝑘 = exp −2𝑖𝑘π
𝑑 = exp −2𝑖(𝑑−𝑘)π

𝑑
(son transposé est vecteur propre de 𝑡P). Les 𝑑 racines 𝑑-ièmes de l’unité sont
donc valeurs propres de 𝑡P, donc de P.
Réciproquement, soit λ une valeur propre de module 1 de P et 𝑣 un vecteur
propre de 𝑡P associé à λ. Le vecteur ligne (complexe) 𝑚 = 𝑡𝑣 vérifie 𝑚P = λ𝑚 et
donc aussi 𝑚P𝑑 = λ𝑑𝑚. Soit 𝑚(𝑟) la trace de 𝑚 sur la classe C𝑟 : 𝑚(𝑟)

𝑖 = 𝑚𝑖 1𝑖∈C𝑟 .
Comme P𝑑(𝑖, 𝑗) = 0 si 𝑖 et 𝑗 ne sont pas dans la même classe C𝑟 (cf. prop. 3.9),
𝑚(𝑟) vérifie 𝑚(𝑟)P𝑑 = λ𝑑𝑚(𝑟) : pour tout état 𝑗 de C𝑟

λ𝑑𝑚(𝑟)
𝑗 = λ𝑑𝑚𝑗 = (𝑚P𝑑)𝑗 = ∑

𝑖∈E
𝑚𝑖P𝑑(𝑖, 𝑗) = ∑

𝑖∈C𝑟
𝑚𝑖P𝑑(𝑖, 𝑗) = ∑

𝑖∈C𝑟
𝑚(𝑟)

𝑖 P𝑑(𝑖, 𝑗)

donc 𝑚(𝑟) est un vecteur propre « à gauche » de P𝑑 pour la valeur propre λ𝑑. Il est
porté par la classe C𝑟 qui est irréductible pour P𝑑 d’après le lemme précédent et
apériodique par définition de la période 𝑑. On applique le lemme 5.5 à la chaîne
de matrice P𝑑 sur classe C𝑟, 1 est la seule valeur propre de module 1, donc λ𝑑 = 1
et λ est une racine 𝑑-ième de l’unité.
Enfin, d’après le lemme 5.7, 𝑚(𝑟) vecteur propre « à gauche » de P𝑑 pour la valeur
propre 1, est proportionnel à π(𝑟) unique probabilité invariante par P𝑑 sur C𝑟.
On en déduit que 𝑚 s’écrit 𝑚 = ∑0≤𝑟<𝑑α𝑟π(𝑟) où les α𝑟 sont des constantes com-
plexes,mais l’équation𝑚P = λ𝑚 et la relationπ(𝑟)P = π(𝑟+1) imposentα𝑟+1 = λα𝑟
pour tout 𝑟, soit α𝑟 = λ𝑟α0, donc finalement pour tout λ racine 𝑑-ième de l’unité,
il n’y a qu’une direction de vecteur propre « à gauche » : 𝑚 = α0∑0≤𝑟<𝑑λ𝑟π(𝑟).
Pour chaque racine 𝑑-ième de l’unité le sous-espace propre associé pour 𝑡P (ou
P) est de dimension 1.

Nous sommes en mesure d’énoncer le résultat final sur les valeurs propres de
module 1 de P dans le cas général :

Proposition 5.8 Soit X une chaîne de Markov homogène de matrice de transi-
tion P sur un espace d’états E fini.

34



a) La dimension du sous-espace propre associé à la valeur propre 1 pour P est
égal au nombre de classes récurrentes de X.

b) Toute valeur propre de module 1 de P est racine 𝑑-ième de l’unité.
Les racines 𝑑-ièmes de l’unité sont valeurs propres de P si et seulement si X a
aumoins une classe récurrente de période 𝑑.
La dimension du sous-espace propre associé à chaque racine 𝑑-ième de l’unité
(autre que 1) est précisément le nombre de classes récurrentes de période 𝑑.

Remarque : compte tenudes remarquesqui suivent les lemmes5.5 et 5.7, l’énoncé
ci-dessus est encore vrai si on remplace « dimension du sous-espace propre »
par « ordre de la valeur propre ».

DÉMONSTRATION. NotonsT l’ensembledes états transients etR1,…,R𝑘 les classes
récurrentes. T peut être vide, mais il y a toujours au moins une classe récurrente
(prop. 3.10).
Il est toujours possible de renuméroter les états
de façon à classer les états de T en premier, puis
ceux de R1 et ainsi de suite jusqu’à R𝑘. D’après
la proposition 3.9, P(𝑖, 𝑗) = 0 pour 𝑖 récurrent et
𝑗 n’appartenant pas à la classe de 𝑖, la matrice P
présente donc des blocs de zéros représentés ci-
contre dans le cas de 3 classes récurrentes : les
zones coloriées représentent des termespositifs
ou nuls, les zones claires ne contiennent que
des termes nuls.

T

R1

R2

R3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Sur chaqueclasse récurrente (finie), il existeuneprobabilité invariante (prop. 5.3),
en la complétant par des 0 pour les états des autres classes on obtient encore une
probabilité invariante par P (cf. la structure de la matrice P). Il est facile de voir
que les vecteurs lignes ainsi construits sont linéairement indépendants, ce sont
des vecteurs propres « à gauche » pour P et la valeur propre 1 (leurs transposés
sont propres pour 𝑡P avec λ = 1), la dimension du sous-espace propre de 𝑡P pour
la valeur propre 1 est donc au moins égale au nombre de classes récurrentes
de X.
Pour établir l’inégalité inverse on considère un vecteur propre 𝑣 quelconque de
𝑡P pour la valeur propre 1 ; le vecteur ligne 𝑚 = 𝑡𝑣 est invariant par P (ce n’est
pas une mesure invariante car ses composantes ne sont pas nécessairement
positives).
Tout vecteur propre 𝑣 de 𝑡P associé à une valeur propre λ de module 1 véri-
fie pour tout 𝑗 de T 𝑣𝑗 = 0, en effet : posons 𝑚 = 𝑡𝑣, si 𝑗 est transient, pour
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tout 𝑖, P𝑛(𝑖, 𝑗) → 0 lorsque 𝑛 → +∞ (cf. prop. 4.1), donc λ𝑛𝑚𝑗 = (𝑚P𝑛)𝑗 =
∑𝑖∈E𝑚𝑖P𝑛(𝑖, 𝑗) tend vers 0, ce qui implique 𝑚𝑗 = 0 et donc 𝑣𝑗 = 0.

Soit R une classe récurrente fixée, il existe une unique probabilité π(R) sur R
invariante par (la restriction de) P. Notons 𝑚(R) la trace de 𝑚 sur R : 𝑚(R)

𝑖 =
𝑚𝑖 1𝑖∈R. Comme P𝑛(𝑖, 𝑗) = 0 si 𝑖 est récurrent et 𝑗 n’appartient pas à la classe de 𝑖
(cf. prop. 3.9), on a

∀𝑗 ∈ R, 𝑚(R)
𝑗 = 𝑚𝑗 = (𝑚P𝑛)𝑗 = ∑

𝑖∈E
𝑚𝑖P𝑛(𝑖, 𝑗)

= ∑
𝑖∈T

𝑚𝑖P𝑛(𝑖, 𝑗)+ ∑
𝑖∈R

𝑚𝑖P𝑛(𝑖, 𝑗)

= ∑
𝑖∈R

𝑚𝑖P𝑛(𝑖, 𝑗) (𝑚 est nulle sur T)

−−−−−→
𝑛→+∞

∑
𝑖∈R

𝑚𝑖π
(R)
𝑗 si R est apériodique.

Si R est une classe périodique, il suffit de considérer les moyennes de Césaro
pour pouvoir passer à la limite (cf. prop. 4.19) :

∀𝑗 ∈ R, 𝑚(R)
𝑗 = 𝑚𝑗 =

1
N

N
∑
𝑛=1

(𝑚P𝑛)𝑗 = ∑
𝑖∈R

𝑚𝑖
1
N

N
∑
𝑛=1

P𝑛(𝑖, 𝑗) −−−−−→
N→+∞

∑
𝑖∈R

𝑚𝑖π
(R)
𝑗 .

Donc, dans tous les cas, 𝑚(R) et π(R) sont proportionnels :

∀𝑗 ∈ R, 𝑚(R)
𝑗 = ∑

𝑖∈R
𝑚𝑖π

(R)
𝑗 = π(R)

𝑗 ∑
𝑖∈R

𝑚𝑖.

Comme 𝑚 est nulle sur T, 𝑚 est la somme sur toutes les classes récurrentes de
vecteurs de la forme αRπ(R), la dimension du sous-espace propre associé à la
valeur propre 1 pour 𝑡P est donc au plus égale au nombre de classes récurrentes
de X. Le point a) est établi.
Compte tenu de la forme de la matrice P (voir dessin ci-dessus) le polynôme
caractéristique de P peut se calculer par blocs : c’est le produit des déterminants
des blocs diagonaux correspondants à T×T, R1 ×R1, …, R𝑘 ×R𝑘. Le bloc T×T
ne fournit aucune valeur propre de module 1 (on a vu ci-dessus que tout vecteur
propre 𝑣 pour λ de module 1 est nul sur T), le résultat b) s’obtient en appliquant
le lemme 5.7 aux différentes classes récurrentes.
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Exercices

Exercice 1. Ruine du joueur sur N états
La fortune initiale du joueur A est 𝑘 (0 ≤ 𝑘 ≤ N), celle de son adversaire est N−𝑘.
À chaque partie le joueur A prend un € à son adversaire avec une probabilité 𝑝
ou lui donne un € avec une probabilité 𝑞, la probabilité d’une partie nulle étant
𝑟 (𝑝+𝑞+𝑟 = 1). Le jeu s’arrête dès que l’un des joueurs est ruiné.
La fortune X𝑛 du joueur A après la 𝑛-ième partie est une chaîne de Markov de
matrice

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 ⋯ 0
𝑞 𝑟 𝑝 0 ⋯ 0
0 𝑞 𝑟 𝑝 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋮
0 0 ⋯ 𝑞 𝑟 𝑝
0 0 ⋯ 0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

1) Montrer que la probabilité 𝑢N(𝑘) de ruine du joueur A vérifie :

𝑢N(0) = 1 𝑢N(N) = 0

∀𝑘 ∈ {1,2,…,N−1} (𝑝+𝑞)𝑢N(𝑘) = 𝑝𝑢N(𝑘+1)+𝑞𝑢N(𝑘−1)

et résoudre ce système ¹⁸.
2) Quelle est la probabilité 𝑣N(𝑘) que le joueur A ruine son adversaire? Montrer

que la durée du jeu est presque sûrement finie.

Éléments de réponse : 1) 𝑢N(𝑘) = 1−𝑘/N si 𝑝 = 𝑞,
𝑢N(𝑘) = 𝑎𝑘−𝑎N

1−𝑎N avec 𝑎 = 𝑞/𝑝 si 𝑝 ≠ 𝑞.

Exercice 2.
Un joueur possède 10 € et veut essayer d’en gagner 10 de plus en jouant à la
roulette. Il envisage deux stratégies :
a) Il mise ses 10 € en une seule fois sur rouge ou sur noir.
b) Il joue 1 € à la fois soit sur rouge soit sur noir et persévère jusqu’à ce que sa

fortune atteigne 20 € (à moins qu’il ne soit ruiné avant …).

18. On pourra, soit considérer la suite auxiliaire 𝑢′
N(𝑘) = 𝑢N(𝑘)−𝑢N(𝑘 − 1), soit utiliser les

techniques classiques de calcul des suites récurrentes 𝑤𝑘+1 = 𝑎𝑤𝑘 +𝑏𝑤𝑘−1 (𝑎, 𝑏 constantes
données).
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Calculer pour ces deux stratégies la probabilité qu’a le joueur de sortir du jeu
avec 20 € en poche, sachant qu’à la roulette la probabilité que le rouge (ou le
noir) sorte est 18

37 et que le joueur double sa mise s’il a joué la bonne couleur et
qu’il la perd sinon. Commenter le résultat.
Éléments de réponse : a) P𝑎 ≈ 0.486. b) P𝑏 ≈ 0.368.

Exercice 3. Promenade aléatoire sur Z
On considère la promenade aléatoire S𝑛 = S0+∑𝑛

𝑖=1 Y𝑖 où les Y𝑖 sont des variables
aléatoires indépendantes valant +1, −1, ou 0 avec les probabilités respectives
𝑝,𝑞,𝑟, telles que 𝑝+𝑞+𝑟 = 1 et S0 une variable aléatoire entière indépendante
des (Y𝑖)𝑖≥1. (S𝑛)𝑛∈N est une chaîne de Markov sur Z dont la matrice de transition
est donnée par

∀𝑖 ∈ Z, P(𝑖, 𝑖 +1) = 𝑝 P(𝑖, 𝑖 −1) = 𝑞 P(𝑖, 𝑖) = 𝑟

Pour tout 𝑘 de Z on note 𝑢(𝑘) la probabilité de passage par l’état 0 à partir de
l’état 𝑘 :

𝑢(𝑘) = P𝑘(∃𝑛 ≥ 0,S𝑛 = 0) = P(∃𝑛 ≥ 0,S𝑛 = 0 ∣ S0 = 𝑘).

1) Montrer que la suite 𝑢(𝑘) vérifie :

∀𝑘 ∈ Z∗, (𝑝+𝑞)𝑢(𝑘) = 𝑝𝑢(𝑘+1)+𝑞𝑢(𝑘−1) et 𝑢(0) = 1

et que
a) si 𝑝 = 𝑞 ∀𝑘 ≠ 0 𝑢(𝑘) = 1,
b) si 𝑝 > 𝑞 ∀𝑘 < 0 𝑢(𝑘) = 1,
c) si 𝑝 > 𝑞 ∀𝑘 > 0 𝑢(𝑘) = (𝑞/𝑝)𝑘 : comparer les événements A(𝑘), pas-

sage par l’état 0 de la promenade aléatoire qui part de l’état 𝑘 et AN(𝑘)
ruine du joueur de l’exercice 1 et remarquer que A(𝑘) est la limite crois-
sante en N des AN(𝑘).

2) En déduire que la probabilité partant de 0 d’y revenir, P0(∃𝑛 ≥ 1,S𝑛 = 0), vaut
dans tous les cas 1− |𝑝−𝑞|. Autrement dit, la promenade aléatoire S𝑛 est
récurrente si 𝑝 = 𝑞 et transiente si 𝑝 ≠ 𝑞.

3) En utilisant les résultats de l’exercice 1, montrer que la promenade aléatoire
S𝑛 symétrique (𝑝 = 𝑞) sort P0-presque sûrement de tout compact :

∀K ∈N, P0(∃𝑛 ≥ 1, ||S𝑛|| ≥ K) = 1.
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Exercice 4. Principe du miroir
On considère la promenade aléatoire symétrique définie par S0 = 0 et S𝑛 =
∑𝑛
𝑖=1 Y𝑖 pour 𝑛 ≥ 1, où les Y𝑖 sont des variables aléatoires indépendantes de loi :

P(Y𝑖 = +1) =
1
2
, P(Y𝑖 = −1) =

1
2
.

1) On se propose de calculer la loi de la v.a. ν−5, premier instant où S𝑛 = −5.
— Montrer que cette loi ne charge que les entiers impairs supérieurs ou

égaux à 5 et calculer P(ν−5 = 5).
— Pour évaluer P(ν−5 = 2𝑘 + 1) avec 𝑘 ≥ 3 on remarque d’abord que sur

l’événement {ν−5 = 2𝑘+1}, S2𝑘 = −4. On calcule alors le nombre total N𝑘
de trajectoires vérifiant S0 = 0 et S2𝑘 = −4 en considérant les nombres M
et D de «montées » et « descentes » de S𝑛, c’est à dire les nombres de fois
où Y𝑖 = +1 (S𝑛 «monte ») et où Y𝑖 = −1 (S𝑛 « descend »).

— On calcule ensuite le nombre N′
𝑘 de trajectoires vérifiant S0 = 0, S2𝑘 = −4

et ayant atteint l’état −5 avant l’instant 2𝑘 en appliquant le principe du
miroir au premier instant 𝑛 où S𝑛 = −5.

— En déduire la loi de ν−5 :

∀𝑘 ≥ 2, P(ν−5 = 2𝑘+1) =
5(2𝑘)!

(𝑘−2)!(𝑘+3)!
(
1
2
)
2𝑘+1

2) Calculer de manière analogue la loi de la v.a. ν10, premier instant où S𝑛 = 10 :

∀𝑘 ≥ 5, P(ν10 = 2𝑘) =
10(2𝑘−1)!

(𝑘+5)!(𝑘−5)!
(
1
2
)
2𝑘

3) Calculer la loi de la v.a. ν = inf{𝑛 > 0 ∣ S𝑛 = 10 ou S𝑛 = −5}, premier instant
où la promenade atteint soit 10 soit −5, c’est-à-dire la loi de la durée du jeu
lorsque les fortunes initiales des joueurs sont 5 et 10.

Exercice 5. Promenades aléatoires symétriques sur Z2 et Z3

1) Une particule part de l’origine O du plan Z2 et se déplace de la façon suivante :
partant à l’instant 𝑛 du point (𝑥,𝑦), la particule saute à l’instant 𝑛+1 à l’un
des quatre points « voisins » (𝑥+1,𝑦+1), (𝑥+1,𝑦−1), (𝑥−1,𝑦+1), (𝑥−1,𝑦−1)
avec la probabilité 1

4 .
M𝑛 désignant la position de la particule à l’instant 𝑛, on cherche à calculer
les probabilités PO(M𝑛 = O) = P(M𝑛 = O ∣ M0 = O) pour tout 𝑛 ≥ 0. Ramener
ce problème à l’étude de deux promenades aléatoires symétriques sur Z et
montrer que

∀𝑛 > 0, PO(M2𝑛 = O) = (C𝑛
2𝑛

1
22𝑛

)
2
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En déduire que la série ∑𝑛≥0PO(M𝑛 = O) diverge.
2) On reprend le problème dans Z3 : la particule part de l’origine et si à un

instant donné elle est au point (𝑥,𝑦,𝑧), à l’instant suivant elle saute à l’un
des huit points « voisins » (𝑥′,𝑦′,𝑧′) où 𝑥′ = 𝑥±1, 𝑦′ = 𝑦±1, 𝑧′ = 𝑧±1 avec la
probabilité 1

8 .
Montrer que

∀𝑛 > 0, PO(M2𝑛 = O) = (C𝑛
2𝑛

1
22𝑛

)
3

En déduire que la série ∑𝑛≥0PO(M𝑛 = O) converge.
Conclusion : Les promenades aléatoires symétriques sur Z et Z2 sont récur-
rentes, la promenade aléatoire sur Z3 est transiente.

Exercice 6. Séries de succès
Soit (𝑝𝑘)𝑘∈N une suite de réels de ]0,1[ et soit (X𝑛) la chaîne de Markov sur N de
matrice de transition

P =

⎛
⎜⎜⎜⎜⎜⎜
⎝

𝑞0 𝑝0 0 0 ⋯ 0 ⋯
𝑞1 0 𝑝1 0 ⋯ 0 ⋯
𝑞2 0 0 𝑝2 ⋯ 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ 0 ⋯
𝑞𝑛 0 0 0 ⋯ 𝑝𝑛 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

1) Montrer que (X𝑛) est une chaîne irréductible apériodique.
2) Soit τ𝑗 le temps d’atteinte de l’état 𝑗. Montrer que

∀𝑖 ∈N, ∀𝑘 ≥ 1, P𝑖(τ0 > 𝑘) =
𝑘−1
∏
𝑗=0

𝑝𝑖+𝑗.

En déduire la loi de τ0 pour la probabilité P𝑖 et une condition nécessaire et
suffisante portant sur ∏∞

𝑗=0𝑝𝑗 pour que la chaîne (X𝑛) soit récurrente.
Dans toute la suite du problème on notera ∀𝑘 ≥ 1, β𝑘 = ∏𝑘−1

𝑛=0𝑝𝑛, β∞ =
∏∞
𝑛=0𝑝𝑛 et β0 = 1.

3) Existe-t-il des mesures réversibles non nulles? Donner une condition né-
cessaire et suffisante portant sur les (β𝑘) pour qu’il existe une probabilité
invariante et la calculer.
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4) Étude de la loi du temps d’atteinte de l’état 𝑗 partant de l’état 𝑖, pour 0 ≤ 𝑗 ≤ 𝑖.
En remarquant que l’état 𝑗 ne peut être atteint à partir de 𝑖 qu’en passant par
0, montrer que P𝑖(τ𝑗 = 𝑘) est nulle si 𝑘 ≤ 𝑗 et que

∀𝑘 > 𝑗, P𝑖(τ𝑗 = 𝑘) =
𝑘
∑
𝑛=1

P𝑖(τ0 = 𝑛) P0(τ𝑗 = 𝑘−𝑛).

5) Étude de la loi du temps d’atteinte de 𝑖 partant de 0. Montrer que si 𝑖 > 0

P0(τ𝑖 = 𝑖) = β𝑖 et ∀𝑘 > 𝑖, P0(τ𝑖 = 𝑘) =
𝑖
∑
𝑛=1

P0(τ0 = 𝑛) P0(τ𝑖 = 𝑘−𝑛).

6) Dans cette question on suppose la chaîne (X𝑛) transiente et on se propose de
calculer les probabilités 𝑓𝑖𝑗 = P𝑖(τ𝑗 < ∞).
a) Montrer que si 𝑖 < 𝑗, 𝑓𝑖𝑗 = 1 : pour cela considérer les v.a. N𝑘 = ∑∞

𝑛=0 1X𝑛=𝑘
(nombre de visites à l’état 𝑘) et montrer que ∑

𝑗−1
𝑘=0N𝑘 = +∞ P𝑖-p.s. sur

{τ𝑗 = +∞} ; conclure en utilisant la transience de la chaîne.

b) Cas 𝑖 ≥ 𝑗 > 0 : montrer en utilisant 4) que si 𝑖 ≥ 𝑗 > 0, 𝑓𝑖𝑗 = 𝑓𝑖0 𝑓0𝑗 = 1− β∞
β𝑖

.

c) En déduire les valeurs de U(𝑖, 𝑗) = ∑∞
𝑛=0 P

𝑛(𝑖, 𝑗).
7) Dans cette question on suppose la chaîne (X𝑛) récurrente et on se propose

de calculer les 𝑚(𝑖, 𝑗) = E𝑖(τ𝑗).

a) Montrer en utilisant 2) que pour 𝑖 ≥ 0, 𝑚(𝑖,0) = ∑𝑛∈N
β𝑖+𝑛
β𝑖

.

b) Montrer en utilisant 5) que pour 𝑖 > 0

𝑚(0,𝑖) = 𝑖β𝑖 +
𝑖
∑
𝑛=1

𝑛β𝑛−1𝑞𝑛−1 +𝑚(0,𝑖)
𝑖
∑
𝑛=1

β𝑛−1𝑞𝑛−1

Montrer que∑𝑖
𝑛=1 β𝑛−1𝑞𝑛−1 = 1−β𝑖 et que∑𝑖

𝑛=1𝑛β𝑛−1𝑞𝑛−1 = ∑𝑖−1
𝑛=0 β𝑛−𝑖β𝑖

et en déduire que 𝑚(0,𝑖) = 1
β𝑖 ∑

𝑖−1
𝑛=0 β𝑛.

c) Justifier les égalités :

∀(𝑖, 𝑗) 𝑖 ≥ 𝑗 > 0, 𝑚(𝑖, 𝑗) = 𝑚(𝑖,0)+𝑚(0, 𝑗)

∀(𝑖, 𝑗) 0 < 𝑖 < 𝑗, 𝑚(0, 𝑗) = 𝑚(0,𝑖)+𝑚(𝑖, 𝑗)

d) Calculer 𝑚(𝑖, 𝑗). Retrouver 𝑚(𝑖,𝑖) à partir de la probabilité invariante.
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Exercice 7. Probabilités d’absorption (capture par les classes récurrentes)
Soit (X𝑛)𝑛≥0 une chaîne de Markov sur un espace d’états E fini, admettant un
ensemble non vide T d’états transients et un ensemble non vide R d’états ré-
currents (formés d’une ou plusieurs classes). On note ν le temps d’atteinte de
l’ensemble R par la chaîne X𝑛 :

ν(ω) = inf{𝑛 ≥ 1 ∣ X𝑛(ω) ∈ R} ou +∞

1) Montrer que pour tout état 𝑖 transient, la variable ν est P𝑖-presque sûrement
finie et même P𝑖-intégrable.

2) On pose 𝑚𝑖 = E𝑖(ν). Montrer que les 𝑚𝑖 sont solutions du système linéaire :

∀𝑖 ∈ T, 𝑚𝑖 = 1+ ∑
𝑗∈T

P(𝑖, 𝑗)𝑚𝑗

Indication : 𝑚𝑖 = E𝑖(ν) = ∑𝑛∈NP𝑖(ν ≥ 𝑛+1).
3) On suppose dans cette question que l’ensemble R est constitué de 𝑟 classes

de récurrence (C1,C2,…,C𝑟), avec 𝑟 ≥ 2. On note μ𝑖𝑘 la probabilité d’atteinte
de la classe C𝑘 à partir de l’état 𝑖 :

μ𝑖𝑘 = P𝑖(∃𝑛 ≥ 1 X𝑛 ∈ C𝑘) = P𝑖(Xν ∈ C𝑘)

Montrer que les μ𝑖𝑘 sont solutions du système linéaire :

∀𝑖 ∈ T, μ𝑖𝑘 = ∑
𝑗∈C𝑘

P(𝑖, 𝑗)+ ∑
𝑗∈T

P(𝑖, 𝑗)μ𝑗𝑘

4) Que peut-on dire de la limite lorsque 𝑛 tend vers l’infini de P𝑛(𝑖, 𝑗) où 𝑖 est
transient et 𝑗 appartient à la classe récurrente C𝑘 ?
Indication : remarquer que lim𝑛 P𝑛(𝑖, 𝑗) = lim𝑛P𝑖(ν < ∞∩Xν ∈ C𝑘∩Xν+𝑛 = 𝑗).

5) Retrouver les résultats de l’exercice 1 sur la ruine du joueur et préciser la
durée moyenne du jeu.

Éléments de réponse : 5) E𝑖(ν) = 𝑖 (N−𝑖)
𝑝+𝑞 si 𝑝 = 𝑞.

E𝑖(ν) = 1
𝑞−𝑝(𝑖 −N 1−(𝑞/𝑝)𝑖

1−(𝑞/𝑝)N ) si 𝑝 ≠ 𝑞.

Exercice 8. Délais et probabilités d’atteinte
Soit (X𝑛)𝑛≥0 une chaîne de Markov irréductible sur un espace d’états fini. On
s’intéresse aux quantités

— 𝑚𝑖𝑗 = temps moyen mis par la chaîne pour passer de l’état 𝑖 à l’état 𝑗 et
— π𝑘

𝑖𝑗 = probabilité d’atteindre l’état 𝑗 avant l’état 𝑘 à partir de l’état 𝑖.
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1) Montrer qu’on peut résoudre ce problème grâce aux résultats de l’exercice
précédent, à condition de modifier convenablement la matrice de transition
de la chaîne.

2) Application à la promenade du scarabée
Un scarabée de déplace le long des arêtes d’un tétraèdre régulier, en chan-
geant de sommet à chaque unité de temps et en choisissant sa destination
au hasard parmi l’un des trois autres sommets (avec la même probabilité 1

3).
a) Calculer le temps moyen mis par le scarabée pour atteindre le sommet S2

à partir de S1.
b) Quelle est la probabilité d’atteindre S2 avant S4 en partant de S1 ?
c) Calculer la loi du temps d’atteinte de S2 à partir de S1 et retrouver le résultat

du a).

Éléments de réponse : 2) a) Temps moyen = 3. 2) b) Proba = ½.
2) c) Loi géométrique : ∀𝑘 ≥ 1,P(ν = 𝑘) = (2/3)𝑘−1 (1/3), on retrouve E(ν) = 3.

Exercice 9. Étude d’une file d’attente
On considère une station service disposant d’une seule pompe et de deux places
de parking pour véhicules en attente de service. On discrétise le problème en
faisant les hypothèses suivantes :

— les clients n’arrivent qu’aux instants entiers, en nombre Y𝑛 à l’instant 𝑛 et
les variables (Y𝑛)𝑛≥0 sont indépendantes et de même loi, donnée par :

P(Y𝑛 = 0) = 0,4 P(Y𝑛 = 1) = 0,4 P(Y𝑛 = 2) = 0,2

— les services commencent aux instants entiers et durent une unité de
temps.

— tout véhicule trouvant à son arrivée les deux places de parking occupées
renonce à attendre et cherche une autre station.

1) Montrer que le nombre X𝑛 de véhicules présents, en attente ou en service,
juste après l’instant 𝑛 est une chaîne de Markov et préciser sa matrice de
transition.

2) Quelle est la probabilité en régime stationnaire de l’événement « aucun véhi-
cule n’est présent à la station »?

3) Si aucun client n’est présent à l’instant 0, quel laps de tempsmoyen faudra-t-il
attendre jusqu’à la saturation de la station (premier instant où les deux places
de stationnement sont occupées)?

Éléments de réponse 1) X𝑛+1 =min((X𝑛 −1)+ +Y𝑛+1 , 3). 2) π(0) = 8/35.
3) 𝑚0 = 20 (cf. exercices 7 et 8).
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Exercice 10. Définition et propriétés des fonctions génératrices
Soit X une variable aléatoire à valeurs dansN. On pose pour 𝑠 ∈C

𝑔X(𝑠) = E(𝑠X) = ∑
𝑘∈N

𝑠𝑘P(X = 𝑘).

1) Quel est le domaine de définition de 𝑔X ? On appelle fonction génératrice de X
la restriction de 𝑔X à l’intervalle [0,1].

2) Montrer que 𝑔X est indéfiniment dérivable sur [0,1[, que toutes ses dérivées
sont croissantes sur [0,1[ et que

∀𝑘 ∈N, 𝑔(𝑘)
X (0) = 𝑘! P(X = 𝑘)

En déduire que la fonction génératrice d’une variable aléatoire entière carac-
térise entièrement sa loi, autrement dit l’application PX ⟶ 𝑔X est injective.

3) Montrer que toute série entière S(𝑥) = ∑∞
𝑘=0𝑎𝑘𝑥

𝑘 de rayon de convergence 1,
dont tous les 𝑎𝑘 sont positifs vérifie :
S(𝑥) −−−−→

𝑥→1−
∑∞
𝑘=0𝑎𝑘 si ∑∞

𝑘=0𝑎𝑘 < ∞,
S(𝑥) −−−−→

𝑥→1−
+∞ si ∑∞

𝑘=0𝑎𝑘 = ∞.

En déduire que 𝑔 est continue à gauche au point 1 et que

E(X) = lim
𝑠↗1

↑ 𝑔′
X(𝑠) et E(X(X−1)) = lim

𝑠↗1
↑ 𝑔′′

X (𝑠) (égalités dans R).

Application : calculer la fonction génératrice d’une variable aléatoire de Pois-
sondeparamètreλ et endéduire sonespérance et sa variance.Mêmequestion
pour une variable aléatoire X binomiale négative de paramètres 𝑟 et 𝑎 (rap-
pel : une telle variable aléatoire est à valeurs dans {𝑛 ∈N ∣ 𝑛 ≥ 𝑟} et sa loi est
donnée par P(X = 𝑟 +𝑘) = C𝑟−1

𝑟+𝑘−1𝑎
𝑟(1−𝑎)𝑘 pour tout 𝑘 ≥ 0 ; pour 𝑟 = 1 on

retrouve la loi géométrique).
4) Calculer la fonction génératrice 𝑔X1+X2 de la somme de deux variables aléa-

toires indépendantes X1 et X2 à valeurs dansN en fonction de 𝑔X1 et 𝑔X2 .
Application : Quelle est la loi d’une somme de deux variables aléatoires in-
dépendantes de loi de Poisson de paramètres λ1 et λ2. Quelle est la loi d’une
somme de 𝑛 variables aléatoires indépendantes de Poisson de même para-
mètre λ?

5) Soit (X𝑖)𝑖∈N∗ une suite de variables aléatoires indépendantes de même loi à
valeurs dans N et ν une variable aléatoire à valeurs dans N∗ indépendante
des (X𝑖). Montrer que l’expression

S(ω) = {∑ν(ω)
𝑖=1 X𝑖(ω) si ν(ω) ≥ 1

0 si ν(ω) = 0
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définit une variable aléatoire entière. On note 𝑔 la fonction génératrice com-
mune des X𝑖, 𝑔ν celle de ν et 𝑔S celle de S.
Montrer que ∀𝑠 ∈ [0,1] 𝑔S(𝑠) = 𝑔ν ∘𝑔 (𝑠) .
En déduire l’espérance et la variance de S en fonction de celles de ν et X𝑖.
Applications :
a) Déterminer la loi de S lorsque ν est une variable aléatoire de Poisson de

paramètre λ et les X𝑖 sont de Bernoulli : P(X𝑖 = 1) = 𝑝 P(X𝑖 = 0) = 1−𝑝 .
b) Le nombre d’accidents de la route se produisant par semaine est une

variable aléatoire de moyenneM et d’écart-typeΣ. Les nombres de blessés
lors de chaque accident ont des distributions indépendantes, chacune
de moyenne 𝑚 et d’écart-type σ. Calculer la moyenne et l’écart-type du
nombre de blessés de la route par semaine.

Éléments de réponse
1) Le domaine de définition contient au moins le disque fermé de rayon 1, mais
peut être C tout entier en particulier si X est bornée : dans ce cas 𝑔X est un
polynôme.
3) Si X ∼ P(λ), 𝑔X(𝑠) = expλ(𝑠−1), E(X) = λ, Var(X) = λ.
Si X binomiale négative, 𝑔X(𝑠) = ( 𝑠𝑎

1−𝑠(1−𝑎))
𝑟, E(X) = 𝑟

𝑎 , Var(X) = 𝑟 1−𝑎𝑎2 .
4) 𝑔X1+X2 (𝑠) = 𝑔X1 (𝑠)𝑔X2 (𝑠) ; X1 +X2 ∼ P(λ1 +λ2).

5) E(S) = E(X1) E(ν) ; Var(S) = (E(X1))2 Var(ν)+E(ν) Var(X1).
a) S suit une loi de Poisson de paramètre λ𝑝.

Exercice 11. Chaînes de Galton-Watson
Soit (Y𝑛,𝑘)(𝑛,𝑘)∈N2 une suite de v.a. à valeurs dans N, indépendantes et de même
loi : Y𝑛,𝑘 représente le nombre de descendants du 𝑘-ième individu de la généra-
tion 𝑛.
La taille des générations successives est déterminée par celle de la population
initiale (variable entière positive X0) et la relation de récurrence :

∀𝑛 ≥ 0, X𝑛+1 =
X𝑛
∑
𝑘=1

Y𝑛,𝑘.

OnposeY = Y1,1,𝑚 = E(Y) et note𝑔(𝑠) = ∑∞
𝑘=0 𝑠

𝑘P(Y = 𝑘) la fonction génératrice
commune des Y𝑛,𝑘 et 𝑔𝑛 celle de X𝑛.

1) En utilisant les résultats de l’exercice précédent,
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a) donner une expression de 𝑔𝑛+1 en fonction de 𝑔𝑛 et 𝑔,
b) montrer que ∀𝑛 ≥ 1, E(X𝑛) = 𝑚𝑛 E(X0) et en déduire que si 𝑚 < 1 la

chaîne est presque sûrement absorbée par l’état 0.
2) Soit 𝑢𝑛 = P1(X𝑛 = 0) = 𝑔𝑛(0) la probabilité que la chaîne se trouve à l’état 0 à

l’instant 𝑛. On suppose dans cette question X0 = 1 et P(Y = 0) > 0.
Montrer que ∀𝑛 ≥ 1, ∀𝑠 ∈ [0,1], 𝑔𝑛+1(𝑠) = 𝑔 ∘𝑔𝑛(𝑠) et en déduire que 𝑢𝑛
vérifie l’équation 𝑢𝑛+1 = 𝑔(𝑢𝑛). Montrer que 𝑔 est continue, croissante et
convexe sur [0,1] et étudier la convergence de la suite 𝑢𝑛 dans les deux cas
𝑚 ≤ 1 et 𝑚 > 1.
Soit ν l’instant de premier passage par 0 de la chaîne (X𝑛). En remarquant
que {X𝑛 = 0} = {ν ≤ 𝑛}, montrer que
— si 𝑚 ≤ 1, P1(ν < +∞) = 1,
— si𝑚 > 1, P1(ν < +∞) = α (0 < α < 1) etP1(X𝑛 → +∞) = 1−α (remarquer

que tous les états autres que 0 sont transients).
3) Montrer que la suite ( X𝑛𝑚𝑛 ) est une martingale qui converge lorsque 𝑛 → +∞.
4) Applications :

a) Des particules se désintègrent en donnant naissance à 0, 1, ou 2 particules
identiques avec les probabilités 𝑝0 > 0,𝑝1 > 0,𝑝2 > 0 (𝑝0 +𝑝1 +𝑝2 = 1).
Exprimer en fonction de 𝑝0,𝑝1,𝑝2 la probabilité que les « descendants »
d’une même particule disparaissent tous.

b) Cent jeunes couples aux noms tous différents colonisent une île déserte.
Chaque couple procrée jusqu’à avoir au moins un garçon et une fille ou
au plus trois enfants. Les probabilités de naissance d’un garçon ou d’une
fille sont supposées égales. Quelle probabilité ont chacun des noms de
famille initiaux de disparaître?

Éléments de réponse
4) Applications :
a) Si 𝑝2 ≤ 𝑝0 (cas 𝑚 ≤ 1), la probabilité d’extinction est 1.

Si 𝑝2 > 𝑝0 (cas 𝑚 > 1), α = 𝑝0
𝑝2

.

b) L’espérance de la loi du nombre de garçons mis au monde par un couple est
𝑚 = 5

4 et α = √2−1.
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