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1 Définitions et exemples

Définition 1.1 Soit (X,)) ,en Une suite de variables aléatoires de (2, «,P) dans
un espaceE fini ou dénombrable appelé espace des états.

1) Ondit que (X,,) ,en €St une chaine de Markov si et seulement si
PXp =J 11Xy =05Xp 1 = lpps o Xy = 0, Xg = lp) = PXypy =7 1 X, = 1)

pour tout n € N, pour tout état j et pour toute suite d'états iy, iy, ... i,_y, i, pour
lesquels la probabilité conditionnelle a un sens, c.-a-d. tels que

PX, =0,X, 1 =iy_1,..., X3 = i5,Xq = ig) > 0.
2) Sien plus la probabilité P(X,,,, = j | X,, = i) ne dépend pas de n, c.-a-d. si
VneN, PX,,=j1X,=0=PX;=j1X,=1)
on dit que la chaine de Markov est homogene.

La propriété de Markov exprime que, sila valeur de X,, est connue a l'instant n, la
loi des variables futures (X,,,;, X,,.» etc.) ne dépend pas du passé (les valeurs de
X,,-1, X,_, etc.). Vérifier a titre d’exercice que, si (X,,) est une chaine de Markov
homogene,

P(Xn+2 = k,Xn+1 :j | Xn = i,Xn_l = in_l, ""Xl = il’XO = io)
= P(Xn+2 = k |Xn+1 :]) P(Xn+l :j IXn = l)
—PX, =k, X, =] | X, = i). (1)

Exemples : vérifier dans chacun des exemples suivants que X,, est une chaine de
Markov homogene et préciser sa matrice de transition.

1) Promenades aléatoires : soit (Y,,) ,cn+ Une suite de variables aléatoires indépen-
dantes et de méme loi a valeurs dans Z (ou Z4), soit X, une variable aléatoire
a valeurs dans Z (ou Z%), indépendante des (Y,,), on pose X,, =X, + X" Y;
pour tout entier n = 1.

2) Ruine du joueur : deux joueurs A et B disposant respectivement de fortunes
initiales a et b (entiers positifs) jouent a un jeu de hasard. La mise est de 1 €
par partie; les résultats des parties sont indépendants, a chaque partie A a
la probabilité p de gagner, g de perdre et r = 0 de faire matchnul (0 < p <1,
0O<p<letp+gqg+r=1).Lejeuse poursuit indéfiniment ou jusqu’a la ruine
d’'un des deux joueurs. On note X, la fortune du joueur A apres n parties.



3)

4)

5)

6)

Séries de succes : des candidats doivent répondre a une suite de questions de
difficulté variable, les performances des différents candidats sont indépen-
dantes. La probabilité pour chaque candidat de bien répondre a une question
de niveau k est p, celle de donner une réponse fausse est g, = 1 — p;.. Lors-
qu’'un candidat donne une réponse fausse, il est remplacé par le candidat
suivant qui démarre au niveau 0. X,, représente le niveau atteint par le candi-
datenlice al'instant n :

PX,=k+11X,=kX,_1=k—-1,...X,_x =0) = p;

Vn,k €N(n = k) { P(Xn+1 =0 |Xn = k;Xn—l = k_l’---Xn—k :0) =4k

Modele de diffusion gazeuse : On considere une enceinte faite de deux com-
partiments séparés par une cloison poreuse. Au départ le compartiment de
gauche contient a molécules de gaz de type A, celui de droite b molécules de
gaz de type B. On modélise la diffusion au travers de la paroi en supposant
qu’a chaque instant, il y a tirage au hasard d'une molécule dans chaque com-
partiment et échange des deux molécules tirées. La composition des deux
urnes apres le n-ieme échange est complétement déterminée par la donnée
de la variable X,, nombre de molécules de gaz A dans 'urne de gauche.

Filedattente : Soit (T,,) ,e la suite des instants (aléatoires) d’arrivée des clients
a un guichet. Un seul client est servi a la fois. On note X,, le nombre de clients
en attente ou en cours de service juste avant 'instant T,, et D,, le nombre de
clients dont le service se termine dans I'intervalle [T,,,T,,,,[. On suppose les
variables D,, indépendantes et de méme loi donnée : pour tout k € N p;. =
P(D, = k). On a, si a™ = max(a, 0) désigne la partie positive du réel a,

vneN, X,,=X,+1-D,)*

Gestion de stock : on s’intéresse au nombre de pieces d'un méme type en stock
dans un entrepot, a différents instants (z,,) ,en, par exemple a chaque fin de
journée ou de semaine. La demande pour ce type de piéces dans I'intervalle
[£,,,t,.+ [ est une variable aléatoire entiere D,,. La suite des v.a. (D,,) e €5t
supposée indépendante et de méme loi connue. La politique de gestion est
la suivante : lorsque le niveau du stock a un des instants (¢,,) descend en
dessous d'un seuil s fixé on se réapprovisionne de facon a ramener le stock a
son niveau maximal S déterminé par exemple par la taille de I'entrep6t ou les
moyens financiers de I'entreprise. On admet que la livraison intervient sans
délai, c’'est-a-dire avant le début de la période suivante. La taille X,, du stock
al'instant t,, vérifie

X, =X,-D)" si s<X,<S

VneN, . ]
X,.1=6-D,) si X,<s



7) Processus de branchement : de nombreux exemples de chaines de Markov
interviennent en génétique (modeles de reproduction) et en physique (désin-
tégrations atomiques). On suppose qu’a la fin de son existence chaque orga-
nisme i de la n-iéme génération donne naissance a un nombre aléatoire Y; ,,
de descendants. Les variables aléatoires (Y; ,,)(; »yen2 SONt supposées indépen-
dantes et de méme loi. Le nombre X,, d’'organismes de la n-ieme génération
vérifie

Xn
VneN, X,,=2.Yi,
i=1
Remarque : si (Y,,) ,en €St une suite de variables aléatoires indépendantes et de

méme loi a valeurs dans E et si f : E x E — E est une fonction quelconque, alors
la suite (X,,) ,en définie par

vneN, X,,,=fX,Y,) et X,donnée, indépendante des (Y,,),cn>

est une chaine de Markov homogene. Ce résultat (a démontrer en exercice)
fournit un moyen assez général pour établir qu'une suite de variables aléatoires
est une chaine de Markov homogene.

Définition 1.2 On appelle matrice de transition de la chaine de Markov homogene
(X,,) la matriceP définie par' :V(i,j)€e ExE P(i,j) =PX, =j | X, =1).

Proposition 1.3 La loi d’'une chaine de Markov homogene est completement
déterminée par la donnée de sa matrice de transition et de la loi de X, (appelée
loi initiale)® : Vi € E, u(i) = P(X, = i). Pour tout entier n et tous iy, i, ..., i,, états
deE :

P(Xn = in’Xn—l = i}’l—l’ ...,Xl = il’XO = io) = H(io)P(io, il)P(il’ 12) "'P(in—l’ il’l)‘
DEMONSTRATION. Immédiate a partir de la formule
P(ir’_%OAi) =P(Ay) P(A; |Ag) P(A, [A;NAY) ... PAA, |A,_1N...NAY. (2)

et de la propriété de Markov homogene. [

Proposition 1.4 (Chapman-Kolmogorov) Pour tout couple (i, ]) d’états deE et
pour tout couple (n, m) dentiers naturels

PXpem=jlXo=0=) PX,=kl|Xy=10 PX,,=jl|X,=k) (3)
keE

1. SiE n'est pas fini, la matrice a un nombre infini de lignes et de colonnes...
2. Le plus souvent X, est connue de maniére déterministe, dans ce cas la loi initiale est une
mesure de Dirac.



En particulier la matrice des transitions en n étapes est la puissance n-ieme de la
matrice P des transitions en une étape® :

VneN, V(i,j))eExE, PX,=jl|X,=1i)=P"(i)) (4)

DEMONSTRATION. Calculons P(X,,.,, =j | X, = i) en décomposant |'événement
{X,,+m =J} surles événements ({X,, = k}) g qui forment une partition de Q :

Py =1 X0 = ) = PKypam :jﬂ(kLEJEXn =k} 1Xo = )

=Y PXpm =JjnX, =k|Xo=1)
keE

P(X
=2

n+m :j!Xn = k;Xo =1)

keE P(Xo =1)
e PXm =j 11X, = kX = D) PX, =k, X, = 1)
"X PX, = 1)
= L P, =) 1% = )P, = kX = D)

€

car X,, est une chaine de Markov homogene.
En particulier, pour n = m =1 et pour tous (i,j) € E xE,

PX,=jlXo=0) =Y PX,=j|X,=kPX, =k|Xg=10 =) P(ik)P(k,j)
keE keE

ce qui établit (4) dans le cas n = 2. Pour m = 1 et n > 1, I'égalité (3) s’écrit

V(i,)) EExE PX,,=j1Xo=1)=Y PX,=k|X,=0)PX,=j1X,=k)
keE
= ZP(X,, =k |X,=1)P(k,j)
keE
doncsi P(X,, = k | X, = i) = P"(i, k) alors P(X,,,; = j | X, = i) = P"*!(i,j) etla
récurrence est établie. O]

2 Généralisations de la propriété de Markov

Dans la section précédente nous avons travaillé sur les suites finies de variables
aléatoires (X;) ., il est intéressant de considérer la chaine « globalement » en

3. Dans toute la suite la notation P" (i, j) désigne le terme de la ligne i, colonne j de la ma-
trice P", a ne pas confondre avec (P(i, j))"!



tant que variable aléatoire de (Q2, «/) dans EN muni d’une tribu & adéquate. Si
on veut que X = (X,,) ,en SOit mesurable de (Q, &) dans (EN, #) des que toutes
ses composantes X,, le sont de (Q, «/) dans (E, 22(E)), il ne faut pas choisir &
trop grande (en particulier le choix & = 22(EN) ne convient pas). On construit
& apartir des « cylindres » de EN définis ci-dessous.

2.1 Cylindres sur EN

Définition 2.1 On appelle cylindre de EN toute partie C de EN de la forme C =
By xB; x--xB, xExExE..., ot n est un entier quelconque et ot les B; sont des
parties quelconques* deE.

On appelle tribu cylindrique sur EN la plus petite tribu & contenant les cylindres
deEN.

Proposition 2.2 Les cylindres deEN ont les propriétés suivantes :

a) lintersection de deux cylindres est un cylindre;

b) la réunion de deux cylindres n'est pas toujours un cylindre;

c) le complémentaire d’'un cylindre est une réunion finie de cylindres;

d) lalgebre de Boole engendrée sur EN par les cylindres est la famille % dont les
éléments sont les réunions finies de cylindres.

DEMONSTRATION. a) Sin > m,ona

By xBy x - xB, xEx...)Nn(ByxBy x++xB,, xEx...)
=ByNByx -+ xB, NB), xB,,,; x--xB, xEx ...

b) Considérer la réunion des cylindres By x ExE x ... et Ex B} x E x ... (faire un
dessin dans R® pour B, et B singletons de N).

c) SoitC=ByxB; x:xB, xExE...,
xeC < Visn, x;€B; donc

xeC < 3Ji<n, xieB_i d’'ou EZCIO{EX-..xExB_iXEx,,,},
i=

d) Montrons que la famille 28 est une algebre de Boole : il estimmédiat de vérifier
que E (cylindre) appartient a 98 et que £ est stable par réunion finie. Vérifions

4. E dénombrable, est muni de la tribu de toutes les parties de E. Si E était muni d'une tribu
& plus petite, il faudrait bien stir prendre les B; dans &.



que 2 est stable par complémentation : soit B = U ]’le C; une réunion finie
de cylindres, son complémentaire B = N ]’le C_] et d’apres le point c), chaque

2 . . . . h r .
C; estune réunion de n; cylindres : C; = U, C; . Finalement, en posant

— Y —
n=max;(n;) etC; , =@ pourn;<ms=n,ona

E k C_ k(1 c k(n c n (k c n c’
=N -:m(u .):m(u .):u(m .):u
j=1 1 j=t\m=1 P jmi\m=r DM m=i\j=r DM o=

ot les C), sont des intersections finies de cylindres donc des cylindres (point
a); le complémentaire de B est bien une réunion finie de cylindres.

La famille 28 est donc une algébre de Boole contenant les cylindres; réci-
proquement toute algebre de Boole contenant les cylindres contient par
définition les réunions finies de cylindres, la proposition est démontrée. [

Proposition 2.3 Si pour toutn € N, X,, est mesurable (0, /) — (E, 22 (E)) et si F
est la tribu cylindrique sur EN, alorsX = (X,,) nen st mesurable (Q, o/ ) — (EN, 7).

DEMmoNsTRATION. Comme & est la tribu engendrée par les cylindres, il suffit de
vérifier que pour tout cylindre C, X~ (C) appartient a <. Mais

X“!(By x By x -+ x B, xEXxExE...) = .r'%OXlTI(B,-) € of
1=
car les X,, sont mesurables (Q2, «/) — (E, 22 (E)). OJ

Il reste & munir (EV,.%) d’'une probabilité, on pourrait s’en tirer en disant qu’il
« suffit» de prendre la probabilité image de P (probabilité sur Q) par X, mais ce
serait bien hypocrite car P n’a jamais été définie précisément! En fait comment
construit-on (Q, o/, P)?

Qu'il s’agisse de construire un espace probabilisé (Q2, «/,P) pour une suite dé-
nombrable ®° de variables aléatoires indépendantes de lois données a valeurs
dans (E, &) ou d'une chaine de Markov, on procede de la méme maniere :

— on se place sur I'espace produit EN que 'on munit de sa tribu cylindrique
F;

— on essaie de prolonger les probabilités P, définies « de facon naturelle »
sur les produits finis E” en une probabilité P sur EN, 'existence et I'unicité
de P sont assurées par le théoreme de Kolmogorov (voir [41]) moyennant
des conditions raisonnables de compatibilité des P,, (1a trace sur E” de la
probabilité P,,,; définie sur E"*! doit étre identique a P,,).

5. Le cas d’'une suite finie de variables aléatoires indépendantes de lois données est trivial : on
se place sur I'espace produit muni de la tribu produit et de la probabilité produit (indépendance
oblige).



Finalement 'espace (€2, «/, P) ainsi construit pour porter la suite X = (X,,) ,en €St
identique a l'espace d’arrivée (EN, Z,P) et X est I'application identité.

Dans le cas des chaines de Markov homogenes les P, sont définies a partir de
la loi initiale A et de la matrice de transition P (cf. prop. 1.3) et la condition de
compatibilité est facile a vérifier.

On notera (Q2, «/, P, ) 'espace probabilisé adapté a la chaine de Markov homo-
gene de matrice de transition P donnée et de loi initiale A (A probabilité donnée
sur E). Dans le cas ol1 A est une mesure de Dirac (cas o1 X, est connue de maniére
déterministe), on note P, au lieu de P;_la probabilité construite sur(Q, ).

2.2 Opérateurs de décalage sur EN

Définition 2.4 On appelle opérateur de décalage (ou translation) sur EN lappli-
cation © deEN dans lui-méme définie par

V(x,) €EN  0((xg, X1y eeer Xpyy o)) = (X1, Xy eeey Xyt ---)
On considere également ses itérés, définis par 01 = 0.0 0% :0%((x,,)) = ((x,151))-

La proposition suivante énonce la forme globale de la propriété de Markov
homogene.

Proposition 2.5 SoitX = (X,,) .,y Une chaine de Markov homogene définie sur
(Q, <, Py) avaleurs dans (EN, ), et =0Xy,...,Xy) la sous-tribu de of engen-
drée par les variables aléatoires X, ..., X,.. Alors, la loi conditionnelle de 0% (X)
sachant <. est la loi conditionnelle deX sachantXy, :

Vf mesurable : (EN,F) — (R,,B(R,)), E\(fO*X)| ) =Ex, (fX).

DEMoNSTRATION. 1l suffit de démontrer 1’égalité ci-dessus pour les fonctions
indicatrices (linéarité et passage a lalimite croissante) et méme pour les fonctions
indicatrices de cylindres : ceci résulte par exemple du théoréme d’unicité des
mesures (la classe des cylindres est stable par intersection finie et contient EN).
On peut aussi utiliser la proposition 2.2 et dire que si deux mesures coincident
sur les cylindres, elles coincident sur les réunions finies de cylindres (formule
de Poincaré et stabilité de la famille des cylindres par intersection finie) donc
sur I'algebre de Boole 28 engendrée et finalement aussi sur la tribu engendrée

(cf. [1] th. I-4-7).



Calculons donc pour le cylindre C=B, xB; x--- x B, x ExE x E... 'espérance
conditionnelle EA(IC(B’“(X)) | &) sur 'événement X;. = iy, ..., Xy =iy :

Sur {Xk = ik’ ""XO = i()}, E}\(lc(ek(x)) | dk) =
P)\(Xl’l+k EBn""’Xk € BO |Xk - ik""’XO - 10)

On décompose les B; pour pouvoir appliquer la propriété de Markov :

P)\(Xn+k EBn""’Xk €B0 |Xk = ik""’XO = lo)

= Z P)\(Xn+k:jn)-..,Xk :jO|Xk:ik,...,X0:iO)
(i() ..... ] nEBgx-+xB,

= > Lt Paik = oo X = Ji 1 Xge = iy o, X = )
(os---jn)EBgx-+-xB,

soit en sommant en j, et en appliquant la propriété de Markov homogene © :

= > 1g, (i) Py, Xy =y - Xy = 1)
(1reeor Jn)EBy X xB,,

=g, (i) P;, (X, €B,,,...,X; € B) =E; (1c(X))
Finalement, pour tous iy, ..., i; de E, on a sur {X;. = i, ..., Xy = iy}

E\(1c(0* (X)) | o) = Ex, (1c(X)). L

2.3 Propriété de Markov forte

Rappelons quelques définitions classiques :

Définition 2.6 Soit (O, o/, P) un espace de probabilité.
On appelle filtration adaptée a la suite X = (X,,) ,en la suite croissante de sous-
tribus () de of, engendrées par les variables (Xy) <, : <, = 0(Xg, ..., X,).

On dit que la variable aléatoireT a valeurs dansN = NU {+oo} est un temps darrét
pour la filtration (<f,,) si et seulement si pour tout n de N l'événement {T = n}
appartient a <,,.

On définit ensuite la tribu </ des événements antérieurs a'T (temps darrét) par

VAed, Acd; < VYneN,An{T=nled,.

On étend enfin la définition des opérateurs de décalage aux temps darrét en posant
0" = 0" sur {T = n}, ce qui définit 0" sur l'événement {T < +o0}.

6. A faire en exercice en généralisant le calcul (1) p. 1 : utiliser la formule (2) p. 3.



Proposition 2.7 (propriété de Markov forte) SoitX = (X,,) ,cn Une chaine de
Markov homogene définie sur (O, «/,P,) a valeurs dans (E,F) et T un temps
darrét pour la filtration (<f,, = 0(Xy, ...,X,,)), alors sur 'événement {T < +o0}

Vf mesurable : (EN, #) — (R,, BR,)), E,(f(0"(X) | ) =Ex (fX)).

DEMONSTRATION. On calculel’espérance conditionnelle E, (f ©OTX) | Xty -r Xp)
sur ’événement {T < +oo} en la décomposant selon la valeur de T :

E)(f0" X)) | 1) Licroo = 2 BA(F(OF (X)) [ ) 1oy
keN

soit en utilisant la proposition 2.5 :

= Z Ey, (f X)) 1r=

keN
= EXT(f(X)) Ircioo- [

3 Classification des états

3.1 Classes d’états communicants

Définition 3.1 Soient i et j deux états de E. On dit que l'état j est accessible a
partir dei si et seulement si

In=0, P"(i,j)=PX,=jlX,=1)>0.

On dit que les états i et j communiquent et on note i = j si et seulement si j est
accessible a partir de i et i est accessible a partir de .

Proposition 3.2 La relation i = j est une relation d’équivalence sur E. Lespace E
peut donc étre partitionné en classes d'équivalence pour la relation i = j, appelées
classes d’états communicants.

DEMONSTRATION. La réflexivité est évidente (pourn=0PX,=1i|X,=1) =1),
tout comme la symétrie. La transitivité résulte de la propriété de Chapman-
Kolmogorov : si P" (i, k) > 0 et si P"*(k, j) > 0,

P (i,j)=PX,om =1 Xo=1) = ZP"(i, D P™(l,j)=P"(i, k) P"(k,j)>0. [
leE

Définition 3.3 Lorsque l'espace E est réduit a une seule classe (cas ot tous les
états communiquent) on dit que la chaine est irréductible.



Pour rechercher les classes d’états communicants, il est commode de travailler
sur le graphe de la chaine plutdt que sur la matrice de transition : le graphe
est obtenu en tracant pour tout couple d’états (i,j) un arc allant de i a j si et
seulement si P(7,j) > 0. On peut ajouter une valeur a I'arc (la probabilité P(i, j))
dans ce cas la donnée du graphe valué est équivalente a la donnée de la matrice
de transition.

Exemples :
Y 1 0 0 0 i
o Yo Y4 0 0 o () % 1 %
P=[{0 0 0 1 0 v (o ™ BL__ X4 _ 5
0 0 % 0 % Va Yo 1

0 0 01 O
La chaine comporte deux classes : {1,2} et {3,4, 5}.
Vérifier que 'espace d’états associé a la ruine du joueur comporte trois classes
(a préciser).

Vérifier que la promenade aléatoire sur Z? telle qu'elle est définie a I'exercice 5
comporte deux classes a préciser.

En revanche la promenade aléatoire sur Z> définie par

X,+1,Y,) avecprobabilité V4
X,—1Y,) avecprobabilité
X,,Y,+1) avecprobabilité Y4
X,,Y,—1) avec probabilité Y4

Xps1 Ypi1) =

est irréductible.

3.2 Récurrence et transience

Définition 3.4 Un état i deE est dit récurrent si et seulement si, partant de i,
la chaineX revient P;-presque stirement a l'état i. Un état non récurrent est dit
transient. On pose

{inf{nzllxn(w):i} ou
T;(w) = .
+00 sur {(Vn=1,X,(w) #i}

T; est un temps darrét pour la filtration («f,, = 0(X,, ...,X,,)), il est appelé temps
de retour a i lorsque la chaine part de i et temps datteinte de i sinon.

10



On a l'équivalence suivante :

VieE, irécurrent < P;(1;<+00)=1
VieE, itransient < P;(1;<+00) <1

Exemple : on montre (cf. exercice 3) que pour la promenade aléatoire sur Z définie
comme somme de variables aléatoires de Bernoulli Py(t, < +00) =1—-|p —¢qI.
Ainsi, pour p = q tous les états sont récurrents, tandis que pour p # g tous les
états sont transients (le calcul fait pour Iétat 0 vaut bien stir pour tout autre état).

On s’intéresse également a la variable aléatoire N; nombre de passages de la
chaine par I'état i apres I'instant 0 :

N;(w) =}, Ix, w)=i

neN*

Nous aurons besoin du résultat intuitif suivant (expliquer sa signification) :

Proposition 3.5 Soient i et deux états quelconques deE, on a

DEMONSTRATION. On considere I'instant T; de premier passage de la chaine par
I'état i. Lévénement {N; = n + 1} peut s’écrire * :

(N;=n+1}={1; <+oonN; 0% = n}

ou N; o 0% désigne le nombre de visites a I’état i apres 'instant T;. La propriété
de Markov forte appliquée a I'instant t; donne :

=P;(N; =n) Pj(‘r,- < +o00) car XTi =isur{T; < +oo}. L[]

Remarque : il est possible de contourner le recours a la propriété de Markov
forte dans la démonstration de (5). On remarque que {N; = 1} = {1; < +oo} et
on décompose I'événement {N; = n + 1} en fonction des valeurs prises par T;,
instant de premier passage par i :

Vn =0, {Ni2n+1}:{N,-2n+1m(k€LIJWT,-:k)}:klgle{Ni2n+1r‘|Ti:k}

7. Dans cette formule, 0 opére sur €, ce qui suppose Q = EN, voirla construction de (Q, <7, P,)
page 7.
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les événements {1; = k},cn+ étant deux a deux disjoints,

Vnz0,PN;zn+1) = Z Pj(Ni2n+lnTi:k)

keN*

= Z P](Nl2n+lﬁ(Xk=l,Xk_1#:l,,Xlil))
keN*

= Z P](Nl2n+].|Xk:l,Xk_1¢l,,Xl:'tl)
keN*

'P](Xk = i’Xk—l * i,...,Xl F l)

= > P,N;=n) P;(1; = k) (prop. de Markov homogene)
keN*

Proposition 3.6 Les conditions suivantes sont équivalentes :

a) Uétati est récurrent (P;(t; < +oo) =1);

b) la chaineX revientP;-p.s. une infinité de fois a l'état i : P;(N; = +o0) = 1;
c) lasériey ,.xP"(i,i) diverge.

Les conditions suivantes sont équivalentes :

a’) l'étati est transient (P;(1; < +o0) <1);

b’) la variable aléatoireN; estP;-p.s. finie (P;(N; = +o00) = 0) et elle suit une loi
géométrique® surN: VYneN, P;(N;=n)=(P;(t;<+00))";

c¢’) lavariable aléatoireN; estP;-intégrable: E;(N;) =) ,.,P"(i, 1) < +o0.

DEMONSTRATION. Appliquons I'égalité (5) dans le cas j = i.

Cas i récurrent : P;(1; < +o0) = 1, I'égalité (5) s’écrit pour j =i :
Vn € N, Pi(Ni =n+ 1) = Pi(Ni = n) = Pi(Ni = 1) = Pi(Ti < +OO) =1

donc P;(N; = +00) = 1 et I'implication (a = b) est établie.

Cas i transient: a; = P;(1; < +00) < 1,1'égalité (5) donne ({N; = 1} = {1; < +00}):

VvneN, P,N;zn+1)=q; P;,(N;=n)=(a;)" P;(N; = 1) = (a;)"*

8. Elle charge 0 contrairement aux lois géométriques usuelles : pour tout n positif ou nul,
P;(N;=n)=~1-aq;) (a;)" avec a; = P;(t; < +00).

12



doncP;(N; = +o0) =lim | (a;)" = 0, N; suit une loi géométrique sur N; rappelons
que, pour toute variable Z a valeurs dans N, on a

EZ)=) nP(Z=n)=) P(Z=n), dou

neN nx=1
&;
E;,N) =) P;(N;=n)= : < 400.
nx>1 — U

Légalité E;(N;) =Y, P" (i, i) découle immédiatement du théoréme de Tonelli :

E,(N,) = E,.( y 1Xn=,.) =Y Ellx-)= Y PiX,=0)= Y P"(i0).
neN* neN* neN* neN*
Ainsi les implications (a’ = b’ = ¢’) sont établies, (b = c¢) également (si la loi
de N; charge +oo, N; ne peut étre intégrable et ), .y P" (i, i) diverge). Les impli-
cations (c = a) (contraposée de (a’ = ¢’)) et (¢’ = a’) (contraposée de (a = c))
sont établies aussi. [

Proposition 3.7 La récurrence et la transience sont des propriétés de classe : si
les états i et j communiquent, alors i et j sont tous deux récurrents ou tous deux
transients.

DEMONSTRATION. Si les états i et j communiquent, il existe des entiers n = 1 et
m = 1tels que, P"(i,j) > 0etP™(j, i) > 0. P"*k*™ estle produit des trois matrices
positives P”, P, P doir:

VkeN, PrkrmG iy =P j)Pr(, ) P™(j, i)
SOit en sommant sur k :
Y PEG = Y PR ) = PR, )P, D) Y. PRGL)).
keN* keN* keN*

D’apres la proposition 3.6 un état i est transient ou récurrent selon que la série
Y ren+ PX(i, i) converge ou diverge; I'inégalité ci-dessus prouve que la conver-
gence de la série Y cn- P¥(i, i) implique celle de Y ..x- P¥(j, /) et que la diver-
gence de Y .o+ P¥(j,j) implique celle de Y ..+ P¥ (i, i), donc les deux séries sont
toujours de méme nature et les états i et j aussi. [

Proposition 3.8 Tous les états d'une méme classe récurrente sont visités P;-p.s.
une infinité de fois a partir de n'importe quel état j de la classe : soient i et j deux
états appartenant a la méme classe récurrente, alors

P;(1; < +00) = P;(N; = +00) = L.
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DEMONSTRATION. Comme les états i et j communiquent, il existe un entier 7 tel
que P"(i,j) > 0. Si Pj (T; = 400) > 0, la probabilité de ne pas repasser une infinité
de fois par i en partant de i est minorée par le produit P"* (i, j) P;(1; = +00) > 0,
ce qui contredit le fait que i est récurrent. On a donc P;(t; = +o0) = 0 ou encore
P;(1; < +o0) = 1 et en reportant ceci dans I'égalité (5) on obtient pour tout 7,
P;(N; 2 n+1)=P;(N; = n) =2 P;(N; = +o0) = 1 (i est récurrent) puis par passage
ala limite décroissante Pj (N; = 400) = 1. O]

Proposition 3.9 La probabilité de sortir d’'une classe récurrente est nulle; plus
précisément si i est un état récurrent et C(i) sa classe

Vj¢C(i), VneN, P;X,=j)=P"(,j) =0.

DEMONSTRATION. Soit j ¢ C(i), supposons qu'il existe un »n tel que P"(i,j) > 0;
dans ce cas, pour tout m, P™(j, i) = 0 sinon les états i et j communiqueraient.
Mais alors la probabilité de non retour a i partant de i est non nulle car minorée
par P"(i,j) > 0, ce qui contredit le fait que i est récurrent. U]

Proposition 3.10 Toute chaine de Markov homogene sur un espace d’états fini a
au moins un état récurrent. En particulier, toute chaine irréductible sur un espace
d’états fini est récurrente.

DEMONSTRATION. Montrons que pour tout état i transient et pour tout j, I'espé-
rance du nombre de passages par I'état i, E;(N;) est finie : rappelons que pour
toute variable Z entiére positive E(Z) = }_,,.; P(Z = n), en utilisant I'égalité (5) on
obtient

neN neN

= Pj(Ti < +OO) Z Pi(Ni = n)

neN

donc E;(N;) < +oo pour tout €tat i transient.

Si tous les états de E (fini) étaient transients on aurait aussi

Ej(YN;) = Y E;(N) <+oo (Tonelli).

icE icE

ce qui est absurde puisque })_;.z N; est le nombre total de visites aux états de E
c'est-a-dire card(N) = +oo. ]
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4 Théorémes limites

Les deux questions que I'on est amené a se poser sont les suivantes :

1. Y a-t-il convergence en loi des X,, lorsque n — +00?
P;X, =) =P"(i,j) —— u(i,j)?
n—+oo
2. Y a-t-il convergence des fréquences de passage par chaque état j?
i 12 P;-p.s.
J () — i =P ..
fi(w) = W k;l Ik, (@)=j teo A(i,j)?

Remarquons tout de suite que siles deux convergences ont lieu, les limites p(i, j)
et A(i,j) sont les mémes : la fréquence f,{ (w) est majorée par 1, fonction P;-
intégrable, donc par convergence dominée E,-(f,{) — E;(A(i,))) = A(i,]) et par
linéarité El-(f,{) = %ZzzlPk(i,j) — W(i,j) (si une suite u,, converge, la suite de
ses moyennes de Césaro converge vers la méme limite).

4.1 Cas j transient

Lorsque j est un état transient, on a vu dans la démonstration de la proposi-
tion 3.10 que pour tout i, E;(N;) est finie, mais

EN)=E( Y Iy )= ¥ By )= ¥ PiX, =)= X P"G,j).
neN*

neN* neN* neN*

Cette série converge, son terme général tend donc vers 0.

Le nombre de visites a I’état transient j étant fini P;-p.s. pour tout i (méme P;-
intégrable, cf. ci-dessus), la suite (1x, (=) xen €St donc nulle pour tout k assez
grand (dépendant de w) et donc

1 i 1 P;-p.s. 0
=1 Xe@=] pyfoo

Proposition 4.1 Pour tout état i de E et pour tout état j transient on a

. o 12 P; -p.s.
Pl(Xn :]) — Pn(l’]) m 0 et ; k;l ]‘Xk((l))=j —)n—>+oo 0.
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4.2 Cas des chaines irréductibles récurrentes

La probabilité de sortir d'une classe récurrente est nulle (cf. proposition 3.9). Si
les états i et j sont récurrents, le seul cas non trivial est celui ou ils sont dans la
meéme classe, ce cas se ramene a l’étude d’'une chaine irréductible récurrente.

Le dernier cas, i transient et j récurrent, est laissé en exercice (voir exercice 7).

4.2.1 Mesures invariantes

Une facon commode de définir une mesure A sur un espace d’états E dénom-
brable est de se donner un vecteur ligne A = (A;);cg oU A; = A({i}).

Définition 4.2 Soit P la matrice de transition d’'une chaine de Markov homogene;
on dit qu'une mesure 1t sur E est invariante par P si et seulement si elle est positive
et vérifie l'équation matricielle nP = m.

La proposition suivante justifie 'intérét porté aux mesures invariantes.

Proposition 4.3 a) Soit (X,,),en Une chaine de Markov homogéne. Si 1t est une
probabilité invariante et si a un instant k, la loi deX,. estn, alors a tout instant
ultérieur m = n,X,, est aussi de loi m.

b) SiE est un espace d'états fini et si pour tout couple (i, ) de E?, P"(i,j) — L;(j),
alorsL; est une probabilité invariante par P.

DEMONSTRATION. a) Sim estlaloide X, il estimmédiat de vérifier que nP est
laloide X;,;.

b) Si la suite de matrices P" converge vers la matrice L, alors P"*! converge

aussi vers L et comme P"*! = P"P, la matrice limite L vérifie L = LP (linéarité
du passage a la limite, E étant fini), donc chacune de ses lignes L; vérifie
L, =L,P. O

Les mesures limites possibles sont donc des mesures invariantes.

Théoreme 4.4 Toute chaine de Markov homogene récurrente irréductible admet
une mesure invariante strictement positive sur E et toutes les mesures invariantes
sont proportionnelles.

Cerésultat découle des deux lemmes suivants, le premier établit 'existence d'une
mesure invariante, le second son unicité a un facteur multiplicatif pres.
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Lemme 4.5 (existence) Soit X une chaine de Markov homogeéne de matrice P,
irréductible récurrente. On fixe un état k et on pose

Vj€E, V]]'c - Ek(0<;Tk 1X,,=j)

A% ]k représente le nombre moyen de passages par l'état j entre deux passages par
U'état k. Le vecteur ligne v* a les propriétés suivantes :

a) v’,z =1;

b) V¥ estinvariant parP : vk P = v¥;

c) VjeE, 0<vf<+oo.

DEMONSTRATION. a) est évident : pour n = 0, Iy —x = 1 P-p.s. et les autres
termes de la somme sont tous nuls (n < 1;.).

b) Calculons le j-ieme terme vk P) i du vecteur ligne vip:

YVEPG) =Y B Y 1y, PGLJ)

i€E i€E O<n<tj

= LB X Lucw, i) POJ)
ieE neN

=)y Ek( <t lx,,zi) P(i,j) (Tonelli)
ieEneN

=3 ) Pn<t,X, =) P3,))
ieEneN

=Y Y PX,=0,X, #kX,1 #k,....X; £ k) P(i,))
icEneN

= Z Z P.X,=1,X,1#k,....X; # k) P(i,))

or P(l’]) = P(Xn+1 :j |Xn = i’Xn—l * k, ---’Xl * k), d’Otl
= Z Z Pk(Xn+1 :])Xn = i’Xl’l—l i k""’Xl i k)

i€eE neN

ik
Pouri # k,I'événement {X,, = i,X,,_; # k, ..., X, # k} s’écritaussi {1, > n,X,, = i}
donc U X,=1,X,_1 ¥ k,...,X; # k} = {1}, > n}, soit en permutant les sommes

(Tonelh)

=) PrXp =/, >n)

neN
= ZNEk(IX,,+1=j 1‘rk>n) = Ek(z an+1=j lrk>n) (Tonelli)
ne
= Ek( 2 1Xn+1—1) ( 2 Ix —1) =V;.
O<n<t l<m<Ty

17



La derniere égalité résulte du fait que, la chaine étant récurrente irréductible, 1,
est P, -presque stirement fini, on peut donc remplacer dans la somme, le terme
d’'indice m = 0 par le terme d’indice m = 1, puisque les deux indicatrices valent
1;_i P,-presque stirement.

c) Lachaine (X,,) étantirréductible, tous les états communiquent et en particulier
il existe deux entiers n et m tels que P" (i, k) > 0 et P (k,i) > 0. D’aprés b), vk
est invariant par P, donc aussi par toutes les puissances de P et comme d’apres
a), vi=1:

1=vk= ZEVJ’C P"(j, k) = VK P" (i, k)
]E

dongc, tout i, vf est fini et aussi strictement positif car

vf:ZEvj’FPm(j,i)zv’,ij(k,i)sz(k,i)>0. O
JE

Lemme 4.6 (unicité) SoitX une chaine de Markov homogene irréductible, de
matrice de transition P et A une mesure invariante par P telle que ;. = 1. Alors
A = V¥ 0it V¥ est la mesure définie dans le lemme 4.5. Si en plusX est récurrente,

alors \ = vk,

DEMONSTRATION. Ecrivons I'équation d’invariance pour A en isolant le terme
d’indice k pourlequel A; =1

Vi€E, A;=) NPG,j) =) NPG,j)+Pk, ).

i€E itk

On itére le procédé en isolant a chaque fois le terme en A :

A=Y ( Y A, Pliy, i) + Pk, i)) P(i,j) + P(k,])

itk ik
=3 > Ay PGy, PG, j) + ) Pk, i) P(, ) + P(k, )
ik iy#k i#k

Y ¥ o Y Ay Pliyiy_y) ... Py, P, )

itk itk  i,%k

+Y Y .Y Pk, iy )Piyoysin_s) ... P(iy, i) P(i, ) + -

itk itk i, 1tk

+) Y Pk, i) P(iy, ) P(i, j) + )_ P(k, D) P(i, j) + P(k, )

i*k iy+k ik
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on minore A; en négligeant la premiere somme (la seule a contenir des termes
eni):

ANzY Y Y Pk iy )Py, in) . PUy, D PG, ) + o
itk iyzk  i,_#k

+ ) Y Pk, ip)Piy, )P, j) + Y Pk, ) P(i, ) + P(k,])
i+kij+k itk

on interprete les produits grace a la prop. 1.3, dans chaque somme on part de k
pour arriver a j en évitant I’état k entre-temps, d'ol1 :

ANzPiXpn=j,ezn+ D)+ +P X, =/, 1, 22) + P Xy =/, 1, = 1)

n+l n+l min(n+1,Ty)

>Y P(X,, =/, T =m) = Ek( Y Iy 1Tk2m) - Ek( y 1xm=j)-
m=1 m=1

On fait tendre n vers +oo : pour tout j # k, les termes d’'indices m =0 et m = 1,

(sur {1 < +oo}) de la derniere somme sont nuls, I'espérance croit donc vers Vv

(Beppo-Levi) et comme A, = Vﬁ =1, pour toutj, A; = v]’f et 'inégalité A = v

est établie.

tay

o~

Si on suppose la chaine X récurrente, on sait d’apres le lemme 4.5 que v, est une
mesure invariante. On pose g = A—V;, c'est également une mesure positive (cf. ci-
dessus), invariante comme différence de mesures invariantes. Mais comme A, =
Vi =1, 4, = 0 et comme la chaine est irréductible tous les états communiquent :
pour tout état j, il existe un entier n tel que P"(j, k) > 0, 1 est invariante par P”,
dou:
VjeEE, 0=p;= épiP"(i,k) =W P"(j,k) donc ;=0 soit A=vy.

1€ D
Remarque : 'hypothése A mesure positive est essentielle pour I'unicité : 1a pro-
menade aléatoire symétrique sur Z est récurrente irréductible mais I'équation
AP = X admet pour solutions les vecteurs ligne de la forme (A; = A + Bi) ., (voir

exercice 3), c’est la condition A = 0 sur Z qui impose B = 0 et fait que cette chaine
n'a que les mesures constantes comme mesures (positives) invariantes.

Il reste a voir si la masse totale de ces mesures invariantes (toutes proportion-
nelles) est finie ou non. Si elle I'est, il existera une probabilité invariante pour la
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chaine. La masse totale de v est :

V¥ () = Zvjk = ZEk( Z lxnzj)

jeE jeE O<n<Tj

:Ek( Y len:j) (Tonelli)

O<n<Tty jeE

=E( ¥ 1)=Erp).
0<n<Tty
Définition 4.7 Pour tout état i récurrent, le temps 1; de retour a i est fini P;-p.s.
et deux cas se présentent :
— soitT; est aussi P;-intégrable, on dit alors que i est récurrent positif,
— soit 1; est non intégrable (E;(t;) = +00), on dit alors que i est récurrent
nul.

Le théoréme suivant établit que la récurrence positive (resp. nulle) est une pro-
priété de classe et donne une condition nécessaire et suffisante pour qu'une
chaine de Markov homogene irréductible soit récurrente positive.

Théoreme 4.8 Soit X une chaine de Markov homogene irréductible, les trois
propositions suivantes sont équivalentes :

a) tous les états sont récurrents positifs,
b) il existe au moins un état récurrent positif,

c) X admet une probabilité invariante .
1

E,(1,)

Si l'une de ces conditions est réalisée, m est unique: Yi€E, m;=

DEMONSTRATION. Limplication a = b est triviale.
Montrons b = ¢ : Si k est un état récurrent positif, E; (1) = v¥(E) est fini, il
suffit de poser pour tout état i, ; = vf/ vK(E) pour obtenir une probabilité
invariante.
On a pour tout état k récurrent positif, ;. = 1/ E;(1;) ce qui établit la formule
finale.
Montrons ¢ = a : soit T une probabilité invariante et k un état quelconque. Il
existe au moins un état j tel que 1t; > 0 et 7, invariante par P, I'est aussi par toutes
ses puissances P" ; comme j et k communiquent il existe un n tel que P" (j, k) > 0
et 1y = X;ep ;P (i, k) = m;P"(j, k) > 0. En divisant 7 par la constante 11, > 0, on
obtient une nouvelle mesure A invariante par P et telle que A, = 1. On peut alors
appliquer le lemme d’unicité (4.6) a A, d’ot1 A = v* et on en déduit que k est
récurrent positif :

E.(t)=Y vi=Y A=) LR (n probabilité). O

i€E i€E ieE M Tg
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Corollaire 4.9 Toute chaine de Markov homogene irréductible a espace d’états
fini est récurrente positive : elle admet une unique probabilité invariante définie
par

1

ViEE, T[l:E(T)
1 1

DEMONSTRATION. Une chaine de Markov homogene irréductible sur un espace
d’états fini est toujours récurrente (cf. prop. 3.10), elle admet donc des mesures
invariantes (théoréeme 4.4) qui sont nécessairement de masse totale finie, d'ot1
'existence d’'une probabilité invariante. Son expression est donnée par le théo-
réme précédent. O

Lexemple classique de chaine récurrente nulle est donné par la promenade
aléatoire symétrique (p = q) sur Z.

Comme exemple de chaine récurrente positive sur un espace dénombrable on
peut citer la série de succes sur N avec pour tout i, p; = p, ¢; = 1 — p (constants)
ou les promenades aléatoires sur N avec barriére réfléchissante en 0 telles que
p<4g.
Remarque : I'existence de mesures invariantes pour une chaine irréductible
n'implique nullement que la chaine soit récurrente : seule l'existence d'une
probabilité invariante permet de conclure a la récurrence (positive). Il est facile
de vérifier que les promenades aléatoires sur Z telles que p > g sontirréductibles,
transientes et qu’elles admettent pour mesures invariantes les mesures de la
forme : ,

1

Viez, A :A+B(z) A=0,B>0.
p

On remarquera aussi que dans cet exemple les mesures invariantes ne sont pas
toutes proportionnelles...

Définition 4.10 SoitX une chaine de Markov homogene de matrice de transitionP.
On appelle mesure réversible pour P toute mesure A\ vérifiant

V(i,j) €E?,  A;P(i,j) = \;P(j, 1)

La notion de mesure réversible, liée au retournement du temps (non traité ici,
voir [5]), peut faciliter la recherche d'une probabilité invariante : les équations
ci-dessus sont beaucoup plus faciles a résoudre que les équations d’invariance et
fournissent des mesures invariantes, comme le montre la proposition suivante.

Proposition 4.11 Toute mesure P-réversible est P-invariante.
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DEMONSTRATION. Soit A P-réversible, calculons (AP) Ik

(AP); = > AP, /) =) NPGL, D) =A; ) P(j,0) = A, O

icE i€E icE

Exemple dapplication : considérons la promenade aléatoire sur N avec barriéere
en 0, sa matrice de transition est donnée par

P0,00=1-r,P0,1)=r, Vi=1P@,i+1)=p>0P@i,i-1)=g=1-p>0.

2z 9z

Les équations de réversibilité s’écrivent
Aor:)\lq VlZ]., )\ip:)\i+lq'

La résolution est immédiate, les mesures réversibles sont de la forme

i-1
Viz1, Aizl(s) Ao

La chaine est irréductible si et seulement si r > 0; dans ce cas, si en plus p < g,
on a une probabilité invariante et la chaine est récurrente positive.

4.2.2 Période d’un état

Le fait qu'une chaine de Markov homogene soit irréductible récurrente positive,
assure l'existence d’'une unique probabilité invariante, mais pas la convergence
des matrices P” comme le montre I'exemple trivial suivant :

01

SlP:(1 0

), VneN, P*=1 et P"''=pP,

D’ou la définition suivante :

Définition 4.12 On appelle période d'un état i l'entier

d(i) = PGCD{n = 1| P"(i,i) > 0}

Dans I'exemple ci-dessus les deux états sont de période 2. La période est une
propriété de classe :

Proposition 4.13 Tous les états d'une méme classe ont méme période.
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DEMONSTRATION. Soient i et j deux états communicants, montrons que d(j)
divise d(i), ce qui suffit par symétrie pour établir que d(i) = d(j). Comme i et j
communiquent, il existe deux entiers I et m tels que P!(i,j) > 0 et P™(j, i) > 0.
Si n est tel que P"(i, i) > 0, alors P™*"*!(j, j) = P™(j, i)P" (i, {)P!(i,j) > 0, donc
d(j) divise m + n + I. Mais comme P™*!(j,j) = P™(j, )P'(i,j) > 0, d(j) divise
aussi m + [ et par différence d(j) divise n. d(j) divise donc tous les entiers tels
que P" (i, i) > 0, donc aussi leur PGCD d(i). U]

Définition 4.14 On dit qu'une classe est apériodique si et seulement si tous ses
états sont de période 1.

Remarque : Si pour un état i, P(i, i) > 0, alors la classe de i est apériodique.

Exemple de classe périodique : outre 'exemple trivial donné ci-dessus, les pro-
menades aléatoires surZ, S,, = Sp + Y7, Y; ottles Y; valent +1 sont des exemples
typiques de chaines irréductibles de période 2.

Proposition 4.15 Soiti un état de période 1, alors
a) il existe un entier N(i) tel que pour tout n = N(i), P"(i,i) > 0;

b) pour tout état j communiquant avec i, il existe un entier N(i, j) tel que pour
toutn =N(i,j),P"(i,j) > 0.

DEMONSTRATION. a) Soit 2(i) = {n =1 |P"(i,i) > 0}, cet ensemble est (presque)
un idéal : si n et m appartiennent a (i), pour tous p et g de N, pn + gm ap-
partient aussi a 2(i) °. En effet, PP 9™ (i, i) = (P"(i,1))” (P" (i, 1)) (produit de
matrices positives).

Montrons d’abord qu'il existe un entier m tel que m et m+1 appartiennenta 2 (i) :
le PGCD de 2(i) valant 1, d’apres I'égalité de Bezout il existe une suite finie *°

(ny,...,n;) d’entiers de 2(i) et (ay, ..., a;) € Zk tels que ijl an;=1. On sépare

les a; selon leur signe en posant a].+ = max(a;,0) et a; = max(-a;,0), I’égalité

k a n.ona

' ATl k +
de Bezout s’écrit alors ijl a; i=1 G 1

i
m+1= Z]’le a;’ n; et ces deux entiers sont dans 2(i).

— k - —
nj=1+ ijl a; n;. En posant m =}

11 suffit maintenant de prendre N(i) = m? : pour tout n = m? la division de n
par ms’écrit: n=gm+ravec0<r <metq = m > r, on peut donc écrire g
souslaformeg=r+pavecpeNdoun=(r+p)m+r=r(m+1)+pmdonc
n appartient a 2(i).

9. Sila propriété était vraie pour p et g dans Z, 2(i) serait un «vrai» idéal de Z.
10. Le PGCD dy (i) de{n >1|n < k, P"(i, i) > 0} décroit vers d (i) lorsque k — +oo, comme
c'est une suite d’entiers d, (i) = d (i) pour k assez grand.
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b) Si i communique avec j, j est également de période 1 et il existe un entier s tel
que P*(i,j) > 0; en posant N(i,j) = N(j) + son a pour tout [ = N(i,j), [ =n+s
avec n = N(j), d'ott P(i,j) = P*(i,/)P"(j,j) > 0. O

Pour les chaines a espace d’états fini, la proposition précédente admet une forme
plus forte et d’énoncé plus simple :

Proposition 4.16 SoitX une chaine de Markov homogene irréductible sur un
espace d’états fini et P sa matrice de transition. SiX est apériodique, les matrices P"
sont toutes strictement positives pour n assez grand. Réciproquement, si il existe
un n pour lequel P" est strictement positive, toutes les matrices (P™) ., sont aussi
strictement positives et X est apériodique.

DEMONSTRATION. Posons N = max(max;eg N(i), max; jegz N(7, j)). Si X est apé-
riodique, N est fini d’apres la proposition précédente et tous les termes des
matrices P", sont strictement positifs pour n = N.

Réciproquement, si pour un entier n, P" est strictement positive, il est clair
que toutes les matrices (P™),,, le sont aussi (écrire le produit P"*' = P P")
et le fait que P" (i, i) et P"*!(i, i) soient strictement positifs implique que 2(i)
contient n et n + 1, donc aussi leur différence, d'ot1 d(i) = 1 et la chaine X est
apériodique. O

Ce résultat ne s’étend évidemment pas aux chaines irréductibles sur un espace
d’états dénombrable : penser a la chaine des séries de succes, elle est apériodique
irréductible mais pour tout état i, P" (i,i) >0 = n =i + 1 car pour revenir en i il
est nécessaire de passer par I'état 0.

4.2.3 Convergence en loi

Théoréeme 4.17 (Convergence en loi) SoitX une chaine de Markov homogene
irréductible apériodique pour laquelle il existe une probabilité invariante n. Alors,
pour toute loi initiale A, P, (X,, = j) ;. En particulier, pour tout état i,

P"(i, )

n—+oo

;.
n—+oo I

La démonstration proposée ici repose sur un argument de couplage emprunté

a[s].

DEMONSTRATION. SoitX la chaine de Markov homogene de matrice de transi-
tion P et de loi initiale A. On considere une seconde chaine de Markov homogene
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Y de méme matrice de transition P mais de loi initiale 7 invariante par P, in-
dépendante de X; une telle chaine Y existe : pour construire le couple (X,Y)
il suffit de se placer sur I'espace produit EN x EN muni de la tribu produit des
tribus cylindriques et de la probabilité produit P, x P,.. Soit (W,,) = X,,,Y,) la
chaine « couplée », c’est une chaine de Markov homogene de loi initiale A x 7 et
de matrice de transition définie par P((i, k)G, D) ="P3,j)P(k,1).

Cette chaine est irréductible, en effet pour tout n, P" ((i, k) (j, 1)) = P" (i, j)P" (k, I)
(indépendance) et d’apres la proposition 4.15, ce produit est strictement positif
pour n assez grand car X est irréductible apériodique (Y qui a méme matrice de
transition I'est donc aussi).

Il estimmeédiat de vérifier que la probabilité it définie sur ExE par ft; ;) = 7;7; est
invariante par P. D’aprés le théoréme 4.8, la chaine couple W est donc récurrente
positive.

Fixons un état a quelconque de E. Le temps d’atteinte T de I'état {a} x {a} par la
chaine récurrente W est donc fini P, . ,-p.s. On définit maintenant une nouvelle
suite (Z,,) en remplacant X,, par Y,, a partir 'instant T :

() = X, () sur{T(w)>n}
Y, () sur {T(w) < nd

Z = (Z,) est une chaine de Markov homogene de loi initiale A et de matrice de
transition P (calculer P(Z,,,; =j | Z, = in...nZ, = iy) en distinguant trois cas
selon que Z,, passe pour la premiere fois par {a} apres I'instant n, a 'instant n
ou avant).

X et Z sont donc deux chaines de Markov homogenes de méme loi initiale A et de
méme matrice de transition P, elles ont donc méme loi (cf. prop. 1.3). Calculons
la différence

P)\(Xn :]) - T :APAXJI(Xn :]) _ﬂPAxn(Yn :]) :ﬂP)\xn(Zn :]) _~PAxn(Yn :])
en décomposantsur {T > n} et {T < n} pour utiliser le faitque Z,, = Y,, sur {T < n}:

P\X, =) -1 =P\, (Z, =, T>n)+Py,,(Z, =}, T<n)
~Prx (Y, =/, T>n)-Py (Y, =j,T<n)
=PyxZ,=j,T>n) =Py (Y,=j,T>n)
Finalement, |P\(X,, = j) = ;| = [Py.n(Z, = j,T > n) =Py (Y, = j, T > n)| estma-

jorée par Py, (T > n) qui décroit vers P, (T = +00) = 0 lorsque 7 croit vers +oo.
]
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4.2.4 Théoreme ergodique

Théoreme 4.18 SoitX une chaine de Markov homogene irréductible de loi ini-
tiale A quelconque. Alors'" :

n
. P)\ —p.S. 1

De plus, si X est récurrente positive de probabilité invariante i, pour toute fonc-
tion f E — R bornée'* :

—Zf(Xk) DL S () = B (f(Ko).

i€cE

DEMONSTRATION. Si X est transiente, chaque état j n'est visité qu'un nombre
P, -p.s. fini de fois et le temps 1; d’atteinte de chaque état j charge +oo donc
Ej(‘l’j) = +00, on donc bien

. P) —p.s. 1
V] €E Z IXk-] n—+00 = Ej(Tj)

Supposons maintenant X récurrente. L'idée consiste a appliquer la loi forte des

l
grands nombres a la suite de variables {t; o 0%},,; qui sont indépendantes et de

méme loi pour la probabilité P,. Rappelons que les instants de passage par j
1

sont donnés par ‘l'] =T et Tl+1 = ‘l']l~ + 10 0%.

Notons V;‘ la variable aleat01re nombre de visites a I’état j entre les instants 0

etn: V}’ =Y Iy -j- Il est clair que V]’.' < n, ses valeurs sont données par :
VP=0 sur {1; > n}
+1 m-— ) m <
n __ m —_ i
Vi=m sur {1]'sn<tf"}= {Z 0% <n <;)Tj081} (1<m<n).
Sur 'ensemble {V]’.’ >1}={tr;<n}ona donc:
Vi1 v

ZT091<H<ZT 00T

=0

11. On faitla convention 1/00 = 0 lorsque j est transient ou récurrent nul.
12. Le résultat peut se généraliser a f m-intégrable (voir [1]).
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ou en divisant par V}’

a, (W) = —ZT091<V—<—ZT oBJ—ﬁn(w) (6)

=0

1
Les variables {t; o 0%},,, étant indépendantes et de méme loi '* pour la probabi-
lité P,, d’apres la loi forte des grands nombres, pour P, -presque tout w

n

1 £
Yn(w):;ZTj"e’ n

1=0

= Ej(‘l'j).

Cecivaut que T; soit intégrable ounon:si (Y;) est une suite de Variables positives,

+o0o (appliquer

indépendantes, de méme loi, non intégrables, % Yl

la loi forte des grands nombres aux variables tronquées Y;C = mln(Y 1, k) et faire
tendre k vers +o00).

Lorsque n tend vers +oo, VJT’ (w) croit vers le nombre total N i(w) de visites al’état j
qui vaut +oo presque sirement : la chaine étant récurrente irréductible, pour
tout i, P;(N; = +o0) = 1 (cf. proposition 3.8) donc P, (N; = +o0) = 1. La suite
V]’? (w) croit (au sens large) vers +oo P, -p.s., quitte a sauter des termes (ceux
d’indice n tels que VJ’? = V}"l) les deux suites o, (w) et B, (w) sont des sous-suites
de v, (w) et ont donc méme limite que y,, (w) soit Ej(‘l'j).

Enfin, 1; étant finie P,-p.s., I'équation (6) vérifiée sur {1; < n}, est vraie pour
P, -presque tout @ au moins pour 7 assez grand (dépendant de w) et le quotient
n/V}’, encadré par o, (w) et §,,(w) converge donc P -p.s. vers E;(t;). En passant
aux inverses on a le résultat annoncé dans la premiere partie du théoreme.

Etudions maintenant la limite de %22:1 fX;) pour f bornée par M dans le cas
ol X admet une probabilité invariante n. Pour cela transformons la somme

1 n
3 X0 = 1 3 F0%0 T
=1

icE

:_ZZf(Z)le i

=1i€E

=—me21xk i

l€E

= Zf(l)V” = Zf(l)—

N jeg icE

13. Le fait que pour I = 0, 1; ait une loi différente (la chaine ne part pas de j) n'affecte pas la
limite puisque %'rj — 0 lorsque n — +oo0.
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Majorons la différence

1§ . (Vi \
=Y X0 - X fm| = [ ra) (=L - )| s MY [ -
N k=1 icE icE n an
Chacun des termes de cette derniere somme tend vers 0 d’apres la premiere

partie du théoreme ergodique, mais E n'est pas supposé fini, soit donc F une
partie finiede E :

2|——n|_2|——n\+l LA

¢F l$F
<Z|——T[’+1 Z—+Zn arZ—:
ieF ieF i¢F i€eE
<Z|——n [+Ym+Ym —Z—+Zn (1t probabilité)
i¢F i€eF ieF i¢F
<ZZ|——T[ |+2) m;
ieF i¢F

Pour majorer Y ;g |V} /n — m;| par g, il suffit de choisir pour F une partie finie
de E assez grande pour que }_;.r T; soit plus petite que €/4, la premiére somme
(finie) est alors majorée par €/4 pour n assez grand. U

Le théoreme ergodique compleéte au moins partiellement I'information donnée
parle théoréme de convergence en loi. Comme les variables V}'/ n sont comprises
entre 0 et 1, on peut leur appliquer le théoréme de Lebesgue et

1
nooE()

V}’ o
E;~ =E ( lek_,) ZP(Xk—J) kZP(u
=1

pour toute chaine de Markov homogene irréductible. Sous des hypotheses plus
faibles (on ne suppose la chaine ni récurrente ni apériodique) on obtient un
résultat plus faible aussi : la convergence des moyennes de Césaro des P" (i, j)
au lieu de celle de la suite des P” (i, j). On a établi le résultat suivant :

Proposition 4.19 Les moyennes de Césaro des matrices P" d’'une chaine de Mar-
kov homogene irréductible convergent :

1 1
V(i,))eExE =Y Pk, ) ——
/ nk; P ms )

avec la convention 1/oo = 0 pour les états j transients ou récurrents nuls.
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5 Propriétés algébriques des chaines de Markov
a espace d’états fini

Dans cette section nous supposons E fini et nous abordons I'étude de la conver-
gence des matrices P" sous un angle purement algébrique, celui des valeurs
propres de P.

Définition 5.1 On appelle matrice stochastique ou matrice de Markov, toute
matrice a termes positifs ou nuls dont la somme de chaque ligne vaut 1.

Proposition 5.2 Soit P une matrice stochastique N x N.
a) P admet la valeur propre 1 pour le vecteur propre colonne'* (1,1, ...,1);
b) les valeurs propres de P sont toutes de module inférieur ou égalal;

c) plus précisément, elles sont toutes dans la réunion des disques de centre P(i, i)
etderayon1—P(i,i) (1<i<N).

DEMONSTRATION. a) traduit le fait que la somme des colonnes vaut 1.

b) Soit A une valeur propre (complexe) de P et v le vecteur propre associé, de
composantes (1, 1,, ..., Uy). Considérons la composante de module maxi-
mum de v: |y;| = max,_;_y |v;]. Le produit Pv = Av s’écrit pour cette compo-
sante :

n n n
PG, py;=Av; dott M|yl <Y PG NIyl <yl Y PG,j) = |yl
=1 j=1 j=1

J

et |A| <1 (v, vecteur propre, n'est pas nul donc v; # 0).

c) On réécrit I'égalité Pv = Av pour la composante v; de module maximum :
Av; =) P(i,j)v; <= A =P(i,)v; = )_P(i, )y,
j=1 Jj#i

En passant aux modules on obtient :

IA=PG, DIyl < ) P, Iyl <] Y PG, j) = v (1= P(i, 1)

J#i J#i

comme |v;| # 0, il existe donc un i pour lequel [\ —P(i,7)| <1 —-P(i, i), ce qui
établit le résultat annoncé. [

14. On notera ‘v et ‘P les transposés d’un vecteur v ou d’'une matrice P.

29



Application :
Si tous les termes diagonaux de P

sont strictement positifs, les valeurs

N\ propres de P sont toutes dans le
disque de centre C = min; P(i,i) >0

et de rayon 1 —min; P(i, i); en par-
ticulier 1 est 'unique valeur propre

de module 1 de P (éventuellement
multiple).

Si P est diagonalisable, si 1 est sa seule valeur propre de module 1 et si 1 est valeur
propre simple, il est facile de montrer que

V(i,j))eExE P"(i,j) —— 7; indépendante de i.
n—oo

En effet dans ce cas la suite des matrices diagonales D" converge vers une ma-
trice D de rang 1, donc P" converge '° vers P*° = QD®Q™! ol1 Q est une matrice
inversible, donc P est également de rang 1 et comme toutes ses lignes ont
méme somme, toutes ses lignes doivent étre égales (a ).

Il ne faudrait pas croire que toute matrice stochastique est diagonalisable, voici
un exemple de matrice stochastique 3 x 3 triangulaire non diagonalisable :

Yo a Ye—a Les valeurs propres sont 2, Y2 et 1. Sia # 0, le
P=[0 % % sous-espace propre associé a %2 est de dimen-
0 0 1 sion 1 et P n'est donc pas diagonalisable.

Nous allons maintenant donner deux démonstrations simplifiées de l'existence
d’une probabilité invariante dans le cas o1 'espace d’états E est fini.

Proposition 5.3 Toute chaine de Markov homogéene sur un espace d'états fini
admet au moins une probabilité invariante.

Voici une premiere démonstration algébrique :

DEMONSTRATION. une probabilité m est invariante si et seulement si mP = m
soit en transposant ‘P ‘m = ‘m c’est-a-dire ‘m est un vecteur propre de ‘P pour la
valeur propre 1. Or 1 est toujours valeur propre de P (cf. proposition précédente)
et P et ‘P ont méme polyndme caractéristique donc mémes valeurs propres;
ceci assure l'existence d'un vecteur ligne m tel que mP = m, mais pas que les
composantes de m soient toutes positives! L'existence d'un vecteur m positif
invariant découle du lemme suivant. Il est ensuite facile de le normer (}_;cg m; =
1) pour en faire une probabilité. [

15. Lespassagesalalimite ne posent pas de probléme puisqu’il s’agit de combinaisons linéaires
finies.
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Lemme 5.4 (Perron-Frobenius) Soit P une matrice stochastique N x N, A une
valeur propre (réelle ou complexe) de module 1 de sa transposée 'P et v le vec-
teur propre (réel ou complexe) associé : "Pv = v. Alors, le vecteur colonne w =
Hul, ..., lugD), est vecteur propre de'P pour la valeur propre 1.

DEMONSTRATION. Calculons la i-eme composante «; du produit (‘P -Dw :

o; = PG, wy—w; = Y PG NIy =1yl = [YPGHy| -1yl =0
jeE jeE jeE
car Y icg tP(i,j)vj = Ay; et |A| = 1. Il reste a remarquer que la somme des a; est
nulle :

Zai=Z(ZtP(i,j)wj—wi):ijZtP(i,j)—Zwi:ij—zwizo

i€E i€eE jeE JjeE ieE ieE jeE ieE

donc les a; sont tous nuls. [
Donnons maintenant une démonstration topologique de la proposition 5.3.

DEMONSTRATION. Une probabilité sur un ensemble E a N éléments est définie
par les valeurs des probabilités de chaque singleton, c’est donc un vecteur de RN
dont toutes les composantes sont comprises entre 0 et 1 et dont la somme vaut 1.
Autrement dit, 'ensemble ./, (E) de ces probabilités est I'intersection de I'hyper-
cube [0, 1]N et de I'hyperplan affine d’équation le.\lzl x; =1, c’estdonc un compact
de I'e.v. normé RN.

On dit qu’une suite (y,,) de probabilités sur E (fini) converge vers , si et seule-
ment si, pour tout singleton {i} de E, la suite numérique p,, ({i}) converge vers
1({i}) . La topologie ainsi définie sur .4 (E) est équivalente 4 celle de RN (conver-
gence des composantes), ., (E) est donc compact.

Soit |1, une probabilité quelconque sur E, pour tout m de N, |1 P" est également
une probabilité sur E, considérons la suite définie par :

1
Vn=1 yu,= ;(p0+ HoP + -+ + P ™)

Les p,, sont elles aussi des probabilités sur E et la compacité de .4, (E) permet
d’extraire de la suite (i1,,) une sous-suite convergente (i, ); pour tout k :

1
p‘nkP_ an = _(MOPnk - MO) —0
s

k—+o00

16. Noter que cette définition équivaut a la convergence faible (ou convergence en loi) de (u,,)
vers .
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car pour tout singleton {i} de E, y,P"*({i}) < 1. La limite pu de la sous-suite (pnk)
vérifie donc pP = p, c’est une probabilité invariante. [

Létude qui suit précise la nature des valeurs propres de module 1 de P.

Rappelons tout d’abord que P et ‘P ont mémes valeurs propres et que pour tout A
les noyaux de P — Al et de sa transposée ‘P — AI ont méme dimension.

Lemme 5.5 Soit X une chaine de Markov homogeéne irréductible finie (donc
récurrente positive), apériodique, de matrice de transition P. P nadmet aucune
valeur propre de module 1 autre que 1. Le sous-espace propre pour A = 1 est de
dimension 1.

Remarque : le résultat du lemme peut étre légerement amélioré; sous les mémes
hypotheéses, il résulte du théoréme de Perron-Frobenius que la valeur propre A =
1 est racine simple du polyndme caractéristique (voir [6] théoréeme 1.1 p. 3).

DEMONSTRATION. Soit 1 la probabilité invariante de la chaine '?; si v est un
vecteur propre (complexe) de ‘P pour la valeur propre A = ¢ de module 1,

m = v vérifie mP = e®m et mP" = "%m, soit pour la composante j :
icE n—+00 e icE

mais m a au moins une composante non nulle et pour m; # 0, (mP"); = emi® m;
n’'a de limite que si 6 = 0 (mod 2m), ce qui impose A = 1. De plus, pour A =1,
m; = (mP"); et (7) implique que m est un vecteur ligne proportionnel a , le sous-

espace propre de ‘P pour A = 1 est donc de dimension 1, celui de P aussi. [

Le lemme suivant précise la structure d'une classe récurrente périodique.

Lemme 5.6 SoitX une chaine de Markov homogene irréductible finie de matrice
de transition P et de période d = 2. Alors la chaine de matrice P* nlest pas irréduc-
tible : elle possede d classes Cy,Cy, ...,C,_; telles que siX; € C,, alorsX; ., €C,,,
(avec la convention C; = C,).

Exemple : 1a promenade aléatoire a barriere réfléchissante sur E = {0, 1,..., N},
est de période d =2 et Cy, = {i € E| i pair}, C, = {i € E | i impair}.

DEMONSTRATION. Soit i un état fixé de E. Remarquons que si n et n’ sont deux
entiers vérifiant P” (i, j) > 0etP" (i,j) > 0,alorsn = n’ (mod d): en effet, comme
i et j communiquent, il existe un entier m tel que P™(j, i) > 0 donc P"*™ (i, i) =

17. On utilise ici le résultat du corollaire 4.9 page 21.
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P"(i,j)P™(j, i) > 0 et de méme P”,””(i, i) > 0, donc d divise a la fois n + m et
n' + m donc aussi leur différence n — n'.

Posons C, = {j € E|P"(i,j) >0= n=r (mod d)} (0 < r < d) et montrons que
Co,Cy, ...,Cy4_, sont les classes de la chaine de matrice P.

Montrons d’abord que deux états d'une méme classe C, communiquent pour
P“. Soient j et k deux états de C, ; ils communiquent avec i donc

Hnj

Im; PMi(j,0)>0 et Imy P™k(k,i)>0

P%(i,j)>0 et 3n, P"(i,k)>0 avec nj=n,=r (mod d)

d’ou P"*™i(i,i) > 0 et P"*"k (i, i) > 0 donc par définition de d = d (i), n;+m; =0
(mod d) etn,+m; =0 (mod d) etcomme n; = n, =r (mod d), m; = my =d-r
(mod d). Mais on a aussi P™i*"(j, k) = P™i(j, i)P" (i, k) > 0 et m; +ny = (d -
r)+r=0 (mod d) donc m; + n; est un multiple de d. Par symétrie il en va de
méme de m,, + n;, donc j et k communiquent en un nombre d’étapes multiple

de d.

Soient maintenant j € C, et k € C; avec r # s (mod d). Montrons par I'absurde
que j et k ne communiquent pas pour P : supposons qu'il existe n = 1 et m = 1
tels que P”d(/', k) >0et Pmd(k,j) > 0. Comme i communique avec j, il existe [
tel que Pl(i,j) >0etcommejeC,,onal=r (mod d), mais alors P k) =
P!(i,/)P"(j,k) >0donc I = | + nd = s (mod d) ce qui est incompatible avec
I=r (mod d).

Prenons maintenant j dans C, et k dans C; tels que P(j, k) > 0 et montrons que
s=r+1 (mod d) ce qui terminera la démonstration. Comme j communique
avec i, on avu ci-dessus qu’il existe un entier [ tel que p! (i,j)>0etl=r (mod d).
Mais P'*1(i, k) = P!(i,j)P(j, k) >0donc [+ 1=s (mod d)ets=r+1 (mod d).

]

Lemme 5.7 SoitX une chaine de Markov homogene irréductible finie, de matrice
de transition P et de période d = 2; les racines d-iemes de l'unité sont valeurs
propres de P et P na pas dautre valeur propre de module 1. Le sous-espace propre
pour chacune des racines d-iemes de l'unité est de dimension 1.

Remarque : le résultat du lemme peut étre légerement amélioré; en fait chacune
des racines d-iémes de 'unité est racine simple du polynéme caractéristique
(voir [6] théoreme 1.15 p. 22).

DEMONSTRATION. Chaque classe C, étant irréductible pour P et finie, elle est
récurrente positive et admet donc une unique probabilité 1" invariante par P4
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(cf. corollaire 4.9). D’apreés le lemme précédent, n'”'P est portée parla classe C, .,
n"P est également invariante par P4 et donc 1'”P = n*V (unicité).

Posons A = exp 2%, en combinant les égalités 1'"’P = n*V on obtient

d-1 d-1 d-1 d-1
(Z JI(r))P =Y 70p=Y gtV = ¥ 7 1 = 1%
=0 r=0 r=0

QU
e

£
d-1 - d-1 d-1
Vk(Q<k<d-1), (Z )\’”n(’))P =Y Arr®p =Y Arpl+D = A7k ¥ Ak
r=0 r=0 r=0 r=0
ce qui montre que pour tout 0 < k < d — 1, le vecteur ligne v}, = Zf;(} AT est
vecteur propre «a gauche » pour la valeur propre A= = exp '2;’”‘ = exp _2’(”;_’“)“
(son transposé est vecteur propre de 'P). Les d racines d-iemes de 1'unité sont

donc valeurs propres de ‘P, donc de P.

Réciproquement, soit A une valeur propre de module 1 de P et v un vecteur
propre de ‘P associé a A. Le vecteur ligne (complexe) m = v vérifie mP = Am et
donc aussi mP? = A%m. Soit m'" la trace de m surla classe C, : mlm =m;licc,-
Comme P%(i,j) = 0'si i et j ne sont pas dans la méme classe C, (cf. prop. 3.9),
m" vérifie m”VP? = Am" : pour tout état j de C,
A'm” = Nmy = (mP?), =y mPG, ) = Y mPUG, )= Y m”"PIG,j)
i€E ieC, ieC,

donc m'” est un vecteur propre « 2 gauche » de P4 pour la valeur propre A%. Il est
porté par la classe C, qui est irréductible pour P d’apres le lemme précédent et
apériodique par définition de la période d. On applique le lemme 5.5 a la chaine
de matrice P sur classe C,, 1 est la seule valeur propre de module 1, donc A = 1
et A est une racine d-ieme de I'unité.

Enfin, d’aprés le lemme 5.7, m"” vecteur propre « a gauche » de P pour la valeur
propre 1, est proportionnel 2 1™ unique probabilité invariante par P? sur C,.
On en déduit que m s'écrit m = ¥y, .4, " ol les a, sont des constantes com-
plexes, mais 'équation mP = Am etlarelation 1'”P = n*V imposent a, ,; = A«,
pour tout 7, soit «, = A", donc finalement pour tout A racine d-ieme de I'unité,
il i’y a qu’une direction de vecteur propre «a gauche » : m = ag Yoo q A",
Pour chaque racine d-iéme de 'unité le sous-espace propre associé pour ‘P (ou
P) est de dimension 1. H

Nous sommes en mesure d’énoncer le résultat final sur les valeurs propres de
module 1 de P dans le cas général :

Proposition 5.8 SoitX une chaine de Markov homogene de matrice de transi-
tion P sur un espace d’états E fini.
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a) La dimension du sous-espace propre associé a la valeur propre 1 pour P est
égal au nombre de classes récurrentes de X.

b) Toute valeur propre de module 1 de P est racine d-ieme de l'unité.
Les racines d-iemes de l'unité sont valeurs propres deP si et seulement siX a
au moins une classe récurrente de période d.
La dimension du sous-espace propre associé a chaque racine d-ieme de l'unité
(autre que 1) est précisément le nombre de classes récurrentes de période d.

Remarque : compte tenu des remarques qui suiventleslemmes 5.5 et 5.7,1'énoncé
ci-dessus est encore vrai si on remplace « dimension du sous-espace propre »
par «ordre de la valeur propre ».

DEMONSTRATION. Notons T 'ensemble des états transientsetR;, ..., R; les classes
récurrentes. T peut étre vide, mais il y a toujours au moins une classe récurrente
(prop. 3.10).

Il est toujours possible de renuméroter les états

de facon a classer les états de T en premier, puis T N

ceux de R, et ainsi de suite jusqu’a R;.. D’apres N

la proposition 3.9, P(7,j) = 0 pour i récurrent et R \

J n'appartenant pas a la classe de i, la matrice P ! S

présente donc des blocs de zéros représentés ci- R S

contre dans le cas de 3 classes récurrentes : les 2 \

zones coloriées représentent des termes positifs R, N

ou nuls, les zones claires ne contiennent que S

des termes nuls.
Sur chaque classe récurrente (finie), il existe une probabilité invariante (prop. 5.3),
en la complétant par des 0 pour les états des autres classes on obtient encore une
probabilité invariante par P (cf. la structure de la matrice P). Il est facile de voir
que les vecteurs lignes ainsi construits sont linéairement indépendants, ce sont
des vecteurs propres « a gauche » pour P et la valeur propre 1 (leurs transposés
sont propres pour ‘P avec A = 1), la dimension du sous-espace propre de ‘P pour
la valeur propre 1 est donc au moins égale au nombre de classes récurrentes
de X.

Pour établir 'inégalité inverse on considére un vecteur propre v quelconque de
P pour la valeur propre 1; le vecteur ligne m = ‘v est invariant par P (ce n'est
pas une mesure invariante car ses composantes ne sont pas nécessairement
positives).

Tout vecteur propre v de ‘P associé a une valeur propre A de module 1 véri-
fie pour tout jde T v; = 0, en effet : posons m = 'v, si j est transient, pour
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tout i, P"(i,j) — 0 lorsque n — +oo (cf. prop. 4.1), donc A"m; = (mP"); =
Y iece M;P" (i, ) tend vers 0, ce qui implique m; = 0 et donc v, 0

Soit R une classe récurrente fixée, il existe une unique probablhté a® sur R
invariante par (la restriction de) P. Notons m™® la trace de m sur R : m(R)
m; 1;.x. Comme P"(i,j) = 0 si i est récurrent et j nappartient pas a la classe dei

(cf. prop. 3.9),on a

Vj€eR, m;R) =m; = (mP"); =Y mP"(i,))

i€E
=Y mP"(i,))+ Y mP"(i, )
ieT ieR
=Y m;P"(i,j) (mestnullesurT)
ieR
— ) mm; ®  siR est apériodique.
n—+oo

ieR

Si R est une classe périodique, il suffit de considérer les moyennes de Césaro
pour pouvoir passer a la limite (cf. prop. 4.19) :

1 N
R) _ = n n (R)
VjeR, m;” = m _N E: (mP )] lEERm _N nE P"(i,)) —>+ ;eRmT[

Donc, dans tous les cas, m'® et 1'® sont proportionnels :

) ® _ (R
Vj €R, m] =) m i =T Y m;.
ieR ieR

Comme m est nulle sur T, m est la somme sur toutes les classes récurrentes de
vecteurs de la forme azn™®, la dimension du sous-espace propre associé a la
valeur propre 1 pour ‘P est donc au plus égale au nombre de classes récurrentes
de X. Le point a) est établi.

Compte tenu de la forme de la matrice P (voir dessin ci-dessus) le polynéme
caractéristique de P peut se calculer par blocs : c’est le produit des déterminants
des blocs diagonaux correspondants a T x T, R; xR, ..., R x R;.. Lebloc T x T
ne fournit aucune valeur propre de module 1 (on a vu ci-dessus que tout vecteur
propre v pour A de module 1 est nul sur T), le résultat b) s'obtient en appliquant
le lemme 5.7 aux différentes classes récurrentes. O
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Exercices

Exercice 1. Ruine du joueur sur N états

La fortune initiale du joueur A est k (0 < k < N), celle de son adversaire est N — k.
A chaque partie le joueur A prend un € a son adversaire avec une probabilité p
ou lui donne un € avec une probabilité g, la probabilité d'une partie nulle étant
r(p+q+r=1).Lejeusarréte des que I'un des joueurs est ruiné.

La fortune X,, du joueur A apres la n-ieme partie est une chaine de Markov de
matrice

1 0 0 0 - 0
qg r p 0 0
S N
o 0 -« g r p
0O 0 - 0 0 1

1) Montrer que la probabilité uy (k) de ruine du joueur A vérifie :

Vke{l,2,....N=-1} (p+qluyk)=pux(k+1)+quy(k—-1)
et résoudre ce systeme '2.

2) Quelle est la probabilité vy (k) que le joueur A ruine son adversaire ? Montrer
que la durée du jeu est presque stirement finie.

Eléments de réponse: 1) uy(k) = 1-k/N sip=gq,
k

uy(k) = a‘-a aveca=qlpsip #q.

1-aN

Exercice 2.

Un joueur possede 10 € et veut essayer d’en gagner 10 de plus en jouant a la
roulette. Il envisage deux stratégies :

a) Il mise ses 10 € en une seule fois sur rouge ou sur noir.

b) Iljoue 1 € a la fois soit sur rouge soit sur noir et persévere jusqu’a ce que sa
fortune atteigne 20 € (2 moins qu'il ne soit ruiné avant ...).

18. On pourra, soit considérer la suite auxiliaire uy (k) = uy(k) — uy(k — 1), soit utiliser les
techniques classiques de calcul des suites récurrentes wy.; = aw; + bw;_; (a, b constantes
données).
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Calculer pour ces deux stratégies la probabilité qu’a le joueur de sortir du jeu
avec 20 € en poche, sachant qu’a la roulette la probabilité que le rouge (ou le
noir) sorte est % et que le joueur double sa mise s’il a joué la bonne couleur et
qu’il la perd sinon. Commenter le résultat.

Fléments de réponse : a) P, ~ 0.486. b)P, =~ 0.368.

Exercice 3. Promenade aléatoire sur Z

On considere la promenade aléatoire S,, = Sy+Y_1_, Y; oliles Y; sont des variables
aléatoires indépendantes valant +1, —1, ou 0 avec les probabilités respectives
p,q,1,tellesque p + g +r =1 et S, une variable aléatoire entiére indépendante
des (Y;) ;1. (S;) nen €st une chaine de Markov sur Z dont la matrice de transition
est donnée par

VieZ, P@U,i+1)=p PG, i-1)=q PG i)=r
Pour tout k de Z on note u(k) la probabilité de passage par I'état 0 a partir de

Iétat k :
u(k)=P,@n=0,S,=0)=P@En=0,S,=01S, = k).

1) Montrer que la suite u (k) vérifie :
VkeZ*, (p+qulk)=puk+)+qulk—-1) et u)=1

et que

a)sip=qg Vk+0 u(k)=1,

b) sip>qg Vk<0 u(k)=1,

c)sip>qg Vk>0 u(k)=(q/p)*:comparerles événements A(k), pas-
sage par I’état 0 de la promenade aléatoire qui part de I'état k et Ay (k)

ruine du joueur de I'exercice 1 et remarquer que A(k) est la limite crois-
sante en N des Ay (k).

2) En déduire que la probabilité partant de 0 d'y revenir, Py(3n = 1,S,, = 0), vaut
dans tous les cas 1 — |p — g|. Autrement dit, la promenade aléatoire S,, est
récurrente si p = ¢ et transiente si p # q.

3) En utilisant les résultats de 'exercice 1, montrer que la promenade aléatoire
S,, symétrique (p = q) sort Py-presque stirement de tout compact :

VKeN, P,@Enz1,

S,|=zK) =1.
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Exercice 4. Principe du miroir

On considere la promenade aléatoire symétrique définie par S, =0 et S, =
»,Y;pour n =1, outles Y; sont des variables aléatoires indépendantes de loi :

P(Y;=+1) = % P(Y;=-1)= %
1) On se propose de calculer la loi de la v.a. v_5, premier instant ou S,, = —5.

— Montrer que cette loi ne charge que les entiers impairs supérieurs ou
égaux a 5 et calculer P(v_; = 5).

— Pour évaluer P(v_s; = 2k + 1) avec k = 3 on remarque d’abord que sur
I'événement {v_s =2k + 1}, S,;. = —4. On calcule alors le nombre total N;.
de trajectoires vérifiant S, = 0 et S,;, = —4 en considérant les nombres M
et D de « montées » et « descentes » de S,,, c’est a dire les nombres de fois
ouY; =+1(S, «monte») etouY; = -1 (S,, «descend »).

— On calcule ensuite le nombre N’ de trajectoires vérifiant S, = 0, S, = —4
et ayant atteint ’état —5 avant I'instant 2k en appliquant le principe du
miroir au premier instant n ou S,, = -5.

— En déduirelaloide v_5:

-
(k=2)!(k+3)!'\2
2) Calculer de maniere analogue la loi de la v.a. v,,, premier instant ot S,, = 10 :

Vk=2, Pv_;=2k+1)=

102k - 1)! (1)2k
(k+5)!(k—-5)!\2
3) Calculerlaloidelava.v=inf{n >0]S, =100uS§, = -5}, premier instant

ol la promenade atteint soit 10 soit —5, c’est-a-dire la loi de la durée du jeu
lorsque les fortunes initiales des joueurs sont 5 et 10.

Exercice 5. Promenades aléatoires symétriques sur Z2 et Z>

1) Une particule part de I'origine O du plan Z* et se déplace de la fagon suivante :

partant a l'instant n du point (x, y), la particule saute a l'instant n + 1 aI'un
des quatre points «voisins» (x+1,y+1), (x+1,y—1), (x—-1,y+1), (x-1,y-1)
avec la probabilité 1.
M,, désignant la position de la particule a I'instant n, on cherche a calculer
les probabilités Po(M,, = O) = P(M,, = O | M, = O) pour tout n = 0. Ramener
ce probléme a I’étude de deux promenades aléatoires symétriques sur Z et
montrer que

. 12
Vn >0, PO(MZ,,:O)z(CZHﬁ)
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En déduire que la série ), Po(M,, = O) diverge.

On reprend le probléme dans Z3 : la particule part de l'origine et si & un
instant donné elle est au point (x, y, z), a 'instant suivant elle saute a 'un
des huit points «voisins» (x',y’,z ) oux'=x+1,y' =y+1,z' =z+1avecla
probabilité 3.

Montrer que

1

3
Vn>0, PyM,,=0)= (Cg"ﬁ)

En déduire que la série }_,,_,Po(M,, = O) converge.
Conclusion : Les promenades aléatoires symétriques sur Z et Z? sont récur-
rentes, la promenade aléatoire sur 73 est transiente.

Exercice 6. Séries de succes

Soit (p) ey Une suite de réels de 0, 1] et soit (X,,) la chaine de Markov sur N de
matrice de transition

1)
2)

G Po 0 0 0
@qa 0 p O 0
p=|% 0 0 P O
: : : : <0
G 00 0 = P

Montrer que (X,,) est une chaine irréductible apériodique.

Soit T, le temps d’atteinte de I'état j. Montrer que
k-1
VieN,Vk=1, P;(1y>k) =[]pi;
Jj=0

En déduire la loi de T, pour la probabilité P; et une condition nécessaire et
suffisante portant sur H]?’ZO p; pour que la chaine (X,,) soit récurrente.

Dans toute la suite du probleme on notera Vk = 1, B, = H’,;;}) P> Poo =
e e] —

3) Existe-t-il des mesures réversibles non nulles? Donner une condition né-

cessaire et suffisante portant sur les (§;) pour qu'’il existe une probabilité
invariante et la calculer.
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4) Etude de laloi du temps d’atteinte de I'état j partant de I'état i, pour 0 < j < i.
En remarquant que 'état j ne peut étre atteint a partir de i qu’en passant par
0, montrer que P;(t; = k) estnulle si k < j et que

k
Vk>j, Pit;=k)=) Pi(ty=n)Py(t;=k—-n).

n=1

5) Etude de laloi du temps d’atteinte de i partant de 0. Montrer que si i > 0

Po(t;=0)=Pp; et Vk>i, Py(t;=k)=) Py(tg=n) Py(t;=k—-n).

n=1
6) Dans cette question on suppose la chaine (X,,) transiente et on se propose de
calculer les probabilités f;; = P;(t; < 00).
a) Montrer quesii<j, f;; =1:pour cela considérer. lesva. Nj =277 0 Ix i
(nombre de visites a I’état k) et montrer que Z]k_:lo N, = +oo P;-p.s. sur
{T; = +o0}; conclure en utilisant la transience de la chaine.
b) Cas i =j>0:montrer en utilisant 4) que si i = j >0, f;; = fio fo; =1 — %’l"
c) En déduire les valeurs de U(i,j) = .5, P" (i, ).

7) Dans cette question on suppose la chaine (X,,) récurrente et on se propose
de calculer les m(i, j) = E;(t;).

a) Montrer en utilisant 2) que pour i =0, m(i,0) =Y e f’é*_".

b) Montrer en utilisant 5) que pour i > 0
. . i . i
m(0,1) =if;+ Y nP, 1 Guoy +m0,1) Y Proy Gn
n=1 n=1

Montrer querqzl ﬁn—l dn-1= l_ﬁi et queziz:l nﬁn—l dn-1= iz;lo n_iﬁi
et en déduire que m(0,1) = g- 3,7 ...

c) Justifier les égalités :
Vi,j)i=j>0, m(,j) =m0 +mO,j)

V(i,)0<i<j, m0,j)=m,i)+m(,j)

d) Calculer m(i, j). Retrouver m(i, i) a partir de la probabilité invariante.
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Exercice 7. Probabilités d’absorption (capture par les classes récurrentes)

Soit (X},) ;50 une chaine de Markov sur un espace d’états E fini, admettant un
ensemble non vide T d’états transients et un ensemble non vide R d’états ré-
currents (formés d'une ou plusieurs classes). On note v le temps d’atteinte de
I'ensemble R par la chaine X, :

viw) =infifn=21[X,(w) R} ou +oo
1) Montrer que pour tout état i transient, la variable v est P;-presque stirement
finie et méme P;-intégrable.
2) On pose m; = E;(v). Montrer que les m; sont solutions du systeme linéaire :
VieT, m;=1+) P(,jim;
JeT
Indication: m; =E;(v) =) ,.nP;(v=n+1).

3) On suppose dans cette question que I'ensemble R est constitué de r classes
de récurrence (C,,C,,...,C,), avec r = 2. On note |;; la probabilité d’atteinte
de la classe C;. a partir de I'état i :

W, =P;An=1 X, €C;) =P;(X, € Cp)
Montrer que les ;; sont solutions du systeme linéaire :

VieT, p= ) PGj)+Y Pl

JeCk JjeT

4) Que peut-on dire de la limite lorsque n tend vers I'infini de P" (i, j) ou i est
transient et j appartient a la classe récurrente Cy, ?
Indication : remarquer que lim, P"(i,j) =lim, P;(v <oconX, € C,. NX,,, = J).
5) Retrouver les résultats de 'exercice 1 sur la ruine du joueur et préciser la
durée moyenne du jeu.

Fléments de réponse:5) E;(v) = —ig\i_qi) sip=4q.
_ 1 . 1-(q/p)i s
E(v) = q—p(’ N 1—(q/p)N) sLp#4.

Exercice 8.  Délais et probabilités d’atteinte

Soit (X,,) ;50 une chaine de Markov irréductible sur un espace d’états fini. On
s'intéresse aux quantités
— m;; = temps moyen mis par la chaine pour passer de I'état i a 'état j et
— nfj = probabilité d’atteindre I'état j avant I’état k a partir de I'état i.
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1) Montrer qu’'on peut résoudre ce probléme grace aux résultats de I'exercice
précédent, a condition de modifier convenablement la matrice de transition
de la chaine.

2) Application a la promenade du scarabée
Un scarabée de déplace le long des arétes d'un tétraédre régulier, en chan-
geant de sommet a chaque unité de temps et en choisissant sa destination
au hasard parmi I'un des trois autres sommets (avec la méme probabilité %).
a) Calculer le temps moyen mis par le scarabée pour atteindre le sommet S,
a partir de S;.
b) Quelle est la probabilité d’atteindre S, avant S, en partant de S, ?

c) Calculerlaloidutemps d’atteinte de S, a partir de S, et retrouver le résultat
dua).

FEléments de réponse : 2) a) Temps moyen=3. 2)b) Proba = .
2)c) Loi géométrique: Vk = 1,P(v=k) = (2/3)%-1(1/3), on retrouve E(v) = 3.

Exercice 9. Etude d’une file d’attente

On considere une station service disposant d'une seule pompe et de deux places
de parking pour véhicules en attente de service. On discrétise le probleme en
faisant les hypothéses suivantes :
— les clients n'arrivent qu’aux instants entiers, en nombre Y,, a I'instant » et
les variables (Y,,) ;-0 sont indépendantes et de méme loi, donnée par :

PY,=0=04 PY¥,=1=04 P(,=2)=02

— les services commencent aux instants entiers et durent une unité de
temps.

— tout véhicule trouvant a son arrivée les deux places de parking occupées
renonce a attendre et cherche une autre station.

1) Montrer que le nombre X,, de véhicules présents, en attente ou en service,
juste apres l'instant n est une chaine de Markov et préciser sa matrice de
transition.

2) Quelle est la probabilité en régime stationnaire de I'événement « aucun véhi-
cule n'est présent a la station »?

3) Siaucun client n'est présent al'instant 0, quel laps de temps moyen faudra-t-il
attendre jusqu’a la saturation de la station (premier instant ot1 les deux places
de stationnement sont occupées)?

Eléments de réponse 1) X,,,; = min((X, - D* +Y,,,;,3). 2)m(0) = 8/35.
3) m, = 20 (cf. exercices 7 et 8).
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Exercice 10. Définition et propriétés des fonctions génératrices

Soit X une variable aléatoire a valeurs dans N. On pose pour s € C

1)
2)

3)

4)

5)

gx(s) =E(s¥) = Y s"PX =k).

keN

Quel est le domaine de définition de gx ?2 On appelle fonction génératrice de X
la restriction de gy a l'intervalle [0, 1].

Montrer que gx est indéfiniment dérivable sur [0, 1[, que toutes ses dérivées
sont croissantes sur [0, 1[ et que

VkeN, g0 =k'PX=k)
En déduire que la fonction génératrice d'une variable aléatoire entiére carac-
térise entierement sa loi, autrement dit 'application Px — gx est injective.

Montrer que toute série entiere S(x) = .37, akxk de rayon de convergence 1,
dont tous les a,;. sont positifs vérifie :
(o] H o0
S(x) 0 oGk Si X7 ,ar <oo,

S(x)
x—1_

En déduire que g est continue a gauche au point 1 et que

+00 Si Z?coz() a;. = oo.

EX)=lim1 ge(s) et EXX-1)=lim1gg(s) (égalitésdans R).
s/1 s/1

Application : calculer la fonction génératrice d'une variable aléatoire de Pois-
son de parametre A et en déduire son espérance et sa variance. Méme question
pour une variable aléatoire X binomiale négative de parametres r et a (rap-
pel : une telle variable aléatoire est a valeurs dans {n € N | n = r} et sa loi est
donnée parPX =r+k)=C',_,a"(1- a)* pour tout k = 0; pour r = 1 on
retrouve la loi géométrique).

Calculer la fonction génératrice gy ,x, de la somme de deux variables aléa-
toires indépendantes X, et X, a valeurs dans N en fonction de gy, et g, .
Application : Quelle est la loi d'une somme de deux variables aléatoires in-
dépendantes de loi de Poisson de parametres A, et A,. Quelle est la loi d'une
somme de n variables aléatoires indépendantes de Poisson de méme para-
metre A?

Soit (X;);en+ uUne suite de variables aléatoires indépendantes de méme loi a
valeurs dans N et v une variable aléatoire a valeurs dans N* indépendante
des (X;). Montrer que I'expression

S(e) = {ZZi“f)Xi(w) SNOES
0 siviw)=0
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définit une variable aléatoire entiére. On note g la fonction génératrice com-
mune des X;, g, celle de v et g5 celle de S.

Montrer que Vse[0,1] gg(s)=g,°8 ().

En déduire I'espérance et la variance de S en fonction de celles de v et X;.

Applications :

a) Déterminer laloi de S lorsque v est une variable aléatoire de Poisson de
parametre A etles X; sontde Bernoulli: PX; =1)=p PX;=0)=1-p.

b) Le nombre d’accidents de la route se produisant par semaine est une
variable aléatoire de moyenne M et d’écart-type XZ. Les nombres de blessés
lors de chaque accident ont des distributions indépendantes, chacune
de moyenne m et d’écart-type . Calculer la moyenne et |’écart-type du
nombre de blessés de la route par semaine.

Fléments de réponse

1) Le domaine de définition contient au moins le disque fermé de rayon 1, mais
peut étre C tout entier en particulier si X est bornée : dans ce cas gx est un
polynome.

3)SiX ~P(A), gx(s) =expA(s — 1), EX) = A, Var(X) = A.

Si X binomiale négative, gy (s) = (%)’, EX) = L, Var(X) = rI;—Z“.

1) 8,1, () = 8x, (9) 8x, ()3 Xy + Xz ~ P(A; +Ay).

5) E(S) = E(X;) E(v); Var(S) = (E(X,))* Var(v) + E(v) Var(X,).

a) Ssuit une loi de Poisson de parametre Ap.

Exercice 11. Chaines de Galton-Watson

Soit (Y,, 1) (n, kenz Une suite de v.a. a valeurs dans N, indépendantes et de méme
loi:Y, , représente le nombre de descendants du k-iéme individu de la généra-
tion n.

La taille des générations successives est déterminée par celle de la population
initiale (variable entiere positive X,)) et la relation de récurrence :

Xn
V=0, Xpm= Vi
k=1

(e 9)

OnposeY =Y, ,;, m = E(Y) etnote g(s) = >3, sKP(Y = k) lafonction génératrice
commune desY, ; et g, celledeX,,.

1) En utilisant les résultats de I'exercice précédent,
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a) donner une expression de g, ., en fonction de g, et g,

b) montrer que Vn =1, E(X,)=m" E(X;) et en déduire quesim <11la
chaine est presque stirement absorbée par I’état 0.

2) Soit u,, =P,(X,, = 0) = g, (0) la probabilité que la chaine se trouve al'état 0 a
I'instant n. On suppose dans cette question X, = 1 et P(Y =0) > 0.
Montrer que Vn =1, Vs € [0,1], g,.1(s) = g ° g,(s) et en déduire que u,,
vérifie '’équation u,,., = g(u,). Montrer que g est continue, croissante et
convexe sur [0, 1] et étudier la convergence de la suite u,, dans les deux cas
m<letm>1.

Soit v I'instant de premier passage par 0 de la chaine (X,,). En remarquant
que {X,, = 0} = {v < n}, montrer que
—sim=<1, Pj(v<+4o0)=1,
—sim>1, Pj(v<+oo)=a(0<a<]l)etP;X, — +00) =1—a(remarquer
que tous les états autres que 0 sont transients).
3) Montrer que la suite (%) est une martingale qui converge lorsque n — +oo.

4) Applications :

a) Des particules se désintegrent en donnant naissance a o, 1, ou 2 particules
identiques avec les probabilités p, > 0,p; > 0,p, > 0 (py + p; + p> = 1).
Exprimer en fonction de p,, p;, p, 1a probabilité que les « descendants »
d’'une méme particule disparaissent tous.

b) Cent jeunes couples aux noms tous différents colonisent une ile déserte.
Chaque couple procrée jusqu’a avoir au moins un garcon et une fille ou
au plus trois enfants. Les probabilités de naissance d'un garcon ou d'une
fille sont supposées égales. Quelle probabilité ont chacun des noms de
famille initiaux de disparaitre?

Fléments de réponse
4) Applications :

a) Sip, < p, (cas m < 1), la probabilité d’extinction est 1.

Sip2>p0(casm>1),0(:%.

b) Lespérance de laloi du nombre de gar¢ons mis au monde par un couple est
m=2eta= V2-1.
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