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Introduction

Ce texte correspond a un enseignement de 32 heures dans le cadre du D.E.S.S.
d’'Ingénierie Statistique et Numérique de I'Université des Sciences et Technolo-
gies de Lille. Il s’adresse a des étudiants titulaires d'une maitrise de mathéma-
tiques appliquées ayant recu un cours de base en probabilités.

Le but du cours est de montrer comment on étudie des réseaux de files d’attente
ou la fiabilité de certains systemes a ’aide de techniques markoviennes. On pré-
sente d’abord les outils fondamentaux : chaines de Markov, processus marko-
viens de sauts. A I'aide de ces outils on étudie des files d’attente et des réseaux
de files d’attente dont les lois de service sont exponentielles et dont les flots d’ar-
rivée sont poissonniens. Dans ce cadre on peut donner explicitement les condi-
tions de stabilité et décrire les états stationnaires. Une légere excursion hors de
ce cadre est effectuée dans le cas o, soit le service est exponentiel, soit le flot
d’arrivée est poissonnien, car on peut encore utiliser une chaine de Markov pour
mener |'étude.

On présente ensuite les notions de base de la fiabilité et quelques outils d’ana-
lyse des systemes complexes. Mais la aussi, I’essentiel du cours concerne les sys-
temes décrits par des processus de Markov. Il s’agit des systemes réparables dont
les taux de défaillance et de réparation sont constants. Dans ce cas on montre
comment calculer la disponibilité et la fiabilité du systeme ainsi que les gran-
deurs moyennes qui leur sont attachées. Un paragraphe évoque des méthodes
qui permettent de ramener dans le cadre markovien des systemes dont le taux
de réparation n’est pas constant.

Ce cours a été écrit en WorD par Michel RoussiGNOL qui a eu la gentillesse de me
laisser ses originaux quand je lui ai succédé. Je I’en remercie bien vivement. Je me
suis contenté de convertir son texte en KX 2¢ et d’y faire quelques modifications
et compléments.

Daniel Friro

@080
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Chapitre 1

Présentation générale
des files d’attente

1.1 File d’attente

La salle de réservation dans une grande gare SNCF donne une bonne représen-
tation d'une file d’attente. Elle comprend un certain nombre de guichets et des
clients qui sont, soit en train d’étre servis, soit en attente. La salle de réservation
forme le systeme. Elle peut étre de capacité totale finie ou infinie. Les clients ar-
rivent de maniere aléatoire selon un flot régulier. Les temps de service sont éga-
lement aléatoires. On va chercher a savoir si la longueur de la file d’attente a un
comportement stationnaire et dans ce cas a calculer sa loi. Cela permet d’optimi-
ser le nombre de guichets nécessaires pour satisfaire les clients.

On rencontre des files d’attente dans de nombreux cas. On vient de voir une file
d’attente dans un organisme fournissant un service a un certain public. On ren-
contre une file d’attente al’entrée d'une unité d'un systeme informatique lorsque
les travaux qui arrivent se mettent en attente avant d’étre traités par cette unité.
Il en est de méme a I’entrée d'un poste de travail dans une usine pour les pieces
qui doivent étre traitées a ce poste. On mesure sur ces exemples l'intérét de la
connaissance du mécanisme de formation d'une file d’attente pour optimiser un
systeme informatique ou un atelier de production.

111 Description du modele

Une file d’attente est décrite par plusieurs éléments : la loi des temps d’arrivée
des clients, la loi des temps de service, le nombre de serveurs, la longueur maxi-
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mum de la file d’attente, I'ordre dans lequel les clients sont servis. Reprenons
chacun de ces éléments.

Les instants d'arrivée des clients sont en général aléatoires. Pour pouvoir calcu-
ler des grandeurs caractéristiques de la file d’attente, on doit connaitre les lois
probabilistes de ces temps d’arrivée, ou tout au moins faire certaines hypotheses
sur ces lois qui seront vérifiées en pratique et qui rendront les calculs possibles.
La premiere hypothese faite est qu’il n’arrive qu'un client a la fois. La deuxieme
hypothese est 'homogénéité dans le temps; cela se traduit par le fait que les
temps d’interarrivée des clients sont des variables aléatoires qui ont méme loi.
Cette hypothese est vérifiée lorsque 1'on étudie une file d’attente durant une pé-
riode ol les conditions qui ameénent les clients sur la file sont semblables. Une
autre hypothese qui sera faite dans ce cours est 'indépendance probabiliste des
temps d’interarrivée des clients; cette hypothese simplifie notablement les cal-
culs probabilistes mais elle est moins claire a justifier en pratique; on peut véri-
fier sa validité en faisant des tests statistiques. Enfin on supposera connue la loi
des temps d’interarrivée. Le cas le plus courant est celui ou cette loi est une loi
exponentielle. Dans ce cas le modele des temps d’arrivée est appelé un processus
de Poisson. Cette hypothese a deux mérites. D’abord elle est souvent vérifiée en
pratique. Ensuite elle se préte bien au calcul probabiliste. Evidemment d’autres
cas peuvent se présenter : temps d’interarrivée constants, de loi uniforme, de loi
lognormale, de loi gamma...

On suppose que les durées de service sont des variables aléatoires indépendantes
de méme loi, indépendantes du processus des arrivées. Ces hypotheses sont sou-
vent vérifiées en pratique. Il est courant de supposer que cette loi est exponen-
tielle. Cette hypothese simplifie les calculs, mais elle n’est pas toujours vérifiée.
On peut étre amené a considérer des temps de services constants, de loi uni-
forme, de loi gamma, de loi lognormale...

Le nombre de serveurs est évidemment un parametre important du modele.

La longueur maximum de la file d’attente est également un parametre du modele.
On peut supposer que la file d’attente peut étre aussi longue que I’on veut. C’est
raisonnable dans certains cas. Cependant dans d’autres cas la longueur est limi-
tée et lorsque la longueur de la file est maximum, un client qui arrive ne peut pas
se mettre en file d’attente et repart. Il faut tenir compte de ce phénomene dans
les calculs.

Le plus souvent les clients sont servis dans leur ordre d’arrivée. C’est la discipline
de service FIFO (First In First Out). Mais d’autres disciplines peuvent étre utilisées.
Par exemple on peut servir en priorité certains types de clients, ou les clients
demandant un service de courte durée.

Pour résumer les caractéristiques d'une file d’attente, on utilise classiquement
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les notations de KENDALL :
loi d’interarrivée / loi de service / nombre de serveurs / longueur max. de la file

Les lois d’interarrivées et les lois de services sont notées symboliquement : M
pour une loi exponentielle (M pour Markov on verra pourquoi plus tard), D pour
une loi déterministe (variable aléatoire constante), U pour une loi uniforme, G
pour une loi quelconque (générale). Par exemple une file M/M/s/oo signifie que
le flot d’arrivées des clients est poissonnien, la loi de service est exponentielle, il y
a s serveurs et la capacité de la salle d’attente est illimitée. Lorsqu’on ne spécifie
pas le dernier parametre celui-ci est infini. Sauf avis contraire la discipline de
service est FIFO.

Deux grandeurs interviennent pour caractériser le modele : le nombre moyen
d’arrivées par unité de temps et la durée moyenne d’un service. Ces nombres se
déduisent des lois d’interarrivée et de service. Par exemple si le processus d’arri-
vée est poissonnien, le temps moyen d’interarrivée vaut I'inverse du parametre
de la loi exponentielle et le nombre moyen d’arrivées par unité de temps vaut ce
parametre. Si la loi du temps de service est exponentielle, la durée moyenne de
service vaut I'inverse du parametre de la loi exponentielle.

1.1.2 Comportement de la file d’attente

On cherche a étudier I'évolution dans le temps de la longueur de la file d’attente.
Deux cas peuvent se produire lorsque la longueur de la file n’est pas limitée. Dans
le premier cas la file peut grandir de plus en plus et sa longueur tendre vers l'in-
fini. Dans le deuxieme cas la file se stabilise; il y a des fluctuations mais un état
stationnaire se met en place. La premier probleme a résoudre est de prévoir se-
lon les parametres de modele dans quel cas on se trouve. Intuitivement on peut
donner une réponse. Si A est le nombre moyen d’arrivées par unité de temps, si
| est le nombre moyen de clients que chaque serveur peut servir par unité de
temps et si s est le nombre de serveurs, la file d’attente se stabilise s’il n’arrive pas
trop de clients pour saturer I'offre de service, c’est-a-dire si A est plus petit que
su. Il faut donner un sens précis a ces concepts et démontrer ce résultat. Lorsque
la longueur de la file est limitée, un régime stationnaire s’établit toujours.

Dans le cas ol1 un régime stationnaire s’établit, il est intéressant de connaitre la
loi de probabilité ou tout au moins la valeur moyenne d'un certain nombre de
grandeurs caractéristiques. On peut citer la longueur de la file d’attente, le temps
passé par un client en attente, le nombre de serveurs occupés. Dans le cas d'une
file d’attente M/M/s, nous calculerons analytiquement ces lois de probabilités
et les valeurs moyennes associées. Dans d’autres cas, nous pourrons seulement
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calculer les valeurs moyennes. Dans tous les cas il est possible de simuler le fonc-
tionnement de la file d’attente pour obtenir des informations sur ces lois de pro-
babilités par des techniques statistiques.

1.2 Réseau de files d’attente

Le fonctionnement d’un atelier de production peut étre modélisé par plusieurs
files d’attente en interaction. Chaque poste de travail constitue une entité ou
un service est rendu, les éléments nécessaires pour ce service étant en attente,
les produits réalisés partant vers d’autres postes de travail, puis vers |'extérieur
a la fin de la chaine de traitement. Ceci constitue un systeme de files d’attente
en interaction, un réseau de files d’attente. Un systeme informatique est aussi
constitué de plusieurs éléments qui traitent plusieurs programmes a la fois, chaque
programme attendant avant d’étre traité par un élément que son tour arrive, puis
partant vers un autre élément et ainsi de suite jusqu’a la fin du traitement.

1.2.1 Description du modele

La description d'un réseau de files d’attente comprend la description de chaque
file d’'attente du réseau (on dira souvent chaque station du réseau) et la descrip-
tion de la circulation des clients entre ces stations et entre I’extérieur et le réseau.

La description de chaque station est celle vue au paragraphe précédent. Chaque
client qui entre dans une station se met en attente et recoit un service selon les
regles de la station.

Le modele le plus simple de circulation des clients entre les stations est le suivant.
Chaque station est éventuellement alimentée de 'extérieur par un flot régulier
d’arrivée de clients et recoit de la sortie d'un certain nombre de stations un flot
de clients. A la sortie de chaque station, chaque client se dirige soit vers I'exté-
rieur, soit vers une autre station du réseau selon un tirage au sort de probabilité
donnée.

Un tel réseau de files d’attente est donc décrit par les caractéristiques internes de
chaque station (nombre de serveurs, loi de service, longueur maximum de la file,
discipline de service), par la loi des temps d’arrivée de U'extérieur en chaque sta-
tion et par les probabilités de routage a la sortie de chaque station vers I'extérieur
ou vers chacune des autres stations.

Le modele d’arrivée le plus courant est le processus de Poisson. On suppose que
pour chaque flot d’arrivée de clients de I'extérieur vers une station, les temps
d’interarrivée des clients forment une suite de variables aléatoires indépendantes
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de méme loi exponentielle. Ce modele est souvent observé en pratique et est
commode pour faire des calculs probabilistes. Mais on peut observer d’autres
modeles d’arrivée de clients avec des temps d’interarrivée constants ou suivant
d’autres lois de probabilité. La parametre le plus important est le nombre moyen
d’arrivées par unité de temps en chaque station.

Le routage a la sortie de chaque station est caractérisé par la probabilité de sortie
vers 'extérieur et les probabilités de transit vers les stations du réseau. Certaines
de ces probabilités peuvent étre nulles. Ce sont les probabilités non nulles qui
déterminent les transits pouvant effectivement se réaliser.

On distingue deux types de réseaux : les réseaux fermés et les réseaux ouverts. Un
réseau fermé n’a aucun lien avec I’extérieur. Un réseau ouvert a au moins un flux
d’entrée et un flux de sortie.

1.2.2 Comportement du réseau

Comme pour une seule file d’attente, la premiere étape de 1'étude d'un réseau
consiste a savoir si le réseau va saturer, c’est-a-dire sila longueur d’au moins une
des files d’attente va tendre vers I'infini. En général il est assez facile de calculer
les flux moyens qui s’établissent entre les stations si un régime stationnaire se
met en place. En effet il suffit d’écrire que les flots moyens d’entrée et de sortie
en chaque station sont égaux pour obtenir un systeme linéaire qui permet de
calculer le flux moyen de clients sur chaque lien du réseau en régime stationnaire.
En comparant pour chaque station le flux moyen d’entrée et I'offre moyenne de
service, on peut déterminer s’il y a saturation ou non.

Lorsqu’il n'y a pas saturation s’établit un régime stationnaire. 1l est alors intéres-
sant de connaitre les lois de probabilité ou tout au moins les valeurs moyennes
des grandeurs caractéristiques en chaque station : longueur de la file d'attente,
temps passé par un client en attente, nombre de serveurs occupés. Dans le cas
ou toutes les files d’attente sont M/M/s et ou les routages sont suffisamment
simples’, on sait calculer ces lois de probabilité. Dans les autres cas, on a la plu-
part du temps recours aux techniques de simulation.

Cette étude permet de guider des choix pour optimiser le comportement du ré-
seau. Bien siir en pratique les réseaux étudiés sont souvent plus complexes que
ceux évoqués ci-dessus. Il peut y avoir plusieurs classes de clients. Diverses syn-
chronisations entre les services peuvent exister. Les études analytiques donnent
alors des résultats insuffisants et on utilise les techniques de simulation.

1. Ce point sera précisé au chapitre 4 traitant des réseaux de Jackson.
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1.3 Simulation

Lorsque le modele étudié est trop compliqué pour faire des calculs analytiques,
on a recours aux techniques de simulation. On simule le modele sur ordinateur
et on traite les résultats observés par des techniques statistiques.

Pour illustrer ceci on va donner un exemple simple de simulation. Un atelier se
compose de quatre postes dont trois machines d’'usinage (Mo, M1, M2) et un
poste de controle manuel (C). Il est organisé comme indiqué ci-dessous.

Les quatre postes sont précédés de files d’attente (stocks tampons) dans lesquels
s’accumulent les pieces en attente de traitement. L'atelier produit deux types de
piéces P1 et P2 dont les caractéristiques sont les suivantes :

— P1 arrive en Mo sur lequel elle est usinée en 4mn, puis passe en M1 sur
lequel elle est usinée en 7 mn; ensuite elle passe au poste de controle ma-
nuel C; le temps de controle est variable et peut étre considéré comme
uniformément distribué entre 3 et 6 mn; enfin P1 sort de |’atelier.

— P2 arrive en Mo sur lequel elle est usinée en 6 mn; elle passe en M2 sur
lequel elle est usinée en 15 mn; puis elle passe au controle C; le temps de
controle est du méme type que pour P1.

Les pieces arrivent dans I'atelier de maniere aléatoire. On a pu estimer qu’elles
arrivent selon un processus de Poisson, le temps moyen d’interarrivée étant de
s5mn. Il y a 70% de pieces P1 et 30% de pieces P2 et on suppose que lorsqu’'une
piece arrive, elle est de type P1 avec probabilité 0.7 et du type P2 avec probabilité
0.3.

Au poste de controle, 10% des pieces sont envoyées au rebut. Partout les pieces
sont traitées par ordre d’arrivée.

Le probleme est d’évaluer les performances de ce systeme de production. On
peut déja faire une analyse des flux moyens a travers ce systeme si un état sta-
tionnaire s’établit. Il arrive en moyenne 12 pieces par heure, dont 8.4 pieces P1 et
3.6 pieces P2. Dans la station Mo la demande moyenne de service pendant une
heure vaut : 8.4x4+3.6c6=55.2 mn, soit un taux d'utilisation de 55.2/60=0.92. En M1
la demande moyenne de service par heure vaut 8.4x7=58.8 mn, soit un taux d’uti-
lisation de 58.8/60=0.98. En M2 la demande moyenne de service par heure vaut
3.6x15=54 mn, soit un taux d’utilisation de 54/60=0.90. En C la demande moyenne
de service par heure vaut 12x4.5=54 mn, soit un taux d’utilisation de 54/60=0.90.
Aucun poste n’est saturé en moyenne. Un régime stationnaire doit s’établir. On
veut connaitre pour ce régime les tailles moyennes des stocks intermédiaires et
les temps de séjour moyens des pieces dans le systeme.

Plusieurs logiciels existent sur le marché pour effectuer ce genre de simulation,
par exemple Qnap distribué par la société SIMULOG, filiale de I'INRIA, ou WITNESS
distribué par le groupe LANNER.
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Malheureusement, les tarifs proposés par les éditeurs aux établissements d’en-
seignement nous ont fait renoncer a les présenter dans le cadre de ce cours.

Les résultats de la simulation sous QNAP sont donnés dans le tableau suivant ou
les quantités suivantes interviennent :
SERVICE temps moyen de service dans la station pour un type de client,
BUSY PCT tauxd’utilisation de la station,
CUST NB  nombre moyen de clients dans la station,
RESPONSE temps moyen passé dans la station pour un type de client,
SERV NB  nombre total de clients ayant transité dans la station.

| TIME =10000.00 |

NAME || SERVICE | BUSY PCT | CUST NB | RESPONSE | SERV NB
C 4.501 0.8730 1197 6.173 1939
(P1) 4.499 0.6049 0.8289 6.165 1344
(P2) 4.505 0.2681 0.3685 6.191 595
Mo 4.611 0.9029 5.555 28.35 1958
(P1) 4.000 0.5441 3.838 28.20 1360
(P2) 6.000 0.3588 1.717 28.71 598
M1 7.000 0.9417 6.318 46.36 1345
(P1) 7.000 0.9417 6.318 46.36 1345
M2 15.00 0.8941 3.412 57.22 596
(P2) 15.00 0.8941 3.412 57.22 596
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Chapitre 2

Processus markoviens de sauts

2.1 Introduction

Dans ce chapitre nous allons étudier des processus de Markov qui permettent
de modéliser et d’étudier des files d’attente. Nous commencerons par donner
des propriétés du processus de Poisson qui modélise les arrivées de clients dans
une file. Puis nous définirons les processus markoviens de sauts et étudierons
certaines de leurs propriétés.

Un processus stochastique est une famille (X;) ;o de variables aléatoires indexées
par le temps ¢. Les variables aléatoires X; que nous étudierons dans ce cours
prennent leurs valeurs dans une espace E dénombrable. Par exemple E est égal
a N lorsque X; représente le nombre de clients présents dans une file d’attente
au temps f. Dans un réseau de quatre stations, E est égal 2 N* lorsque le pro-
cessus X; vaut (X (1),X2(1),X3(t),X4 (1)) ou X; (¢) représente le nombre de clients
présents dans la station i, (i = 1,2,3,4) au temps ¢.

Nous allons étudier des processus de Markov. 1l s’agit de processus X; tels que la
loi du processus apres un instant ¢ dépend du passé du processus uniquement
a travers la connaissance de X;. Lorsque X; représente le nombre de clients pré-
sents dans une file d’attente, la propriété de Markov est vérifiée si le flux d’entrée
est Poissonnien et siles temps de service ont des lois exponentielles. L'intérét des
processus de Markov est que I’on peut obtenir une description complete de I'état
stationnaire quand il existe.
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2.2 Processus de Poisson

Nous allons étudier un modele appelé processus de Poisson. Ce processus re-
présente par exemple les instants d’arrivées successifs de clients dans une file
d’attente.

On note T; l'instant d’arrivée du premier client, T le deuxieme, T le k-éme et
ainsi de suite. La suite (Ty)r>; est une suite croissante de variables aléatoires a
valeurs dans R;..

On note T; les durées des intervalles interarrivées : pouri =2, t; = T; —T;_; et
11 = T;. La suite (1;);>; est donc également une suite de variables aléatoires a
valeurs dans R.,..

DEFINITION 2.2.1 Siles variables aléatoires (1;);>1 sontindépendantes et de méme
loi exponentielle de paramétre a (a > 0), on dit que la suite (T = Zle T;)k>1 €St
la suite des instants de saut d’'un processus de Poisson de paramétre a.

Rappelons la densité de la loi exponentielle : f(x) = ae™** 1,¢. Lespérance et la
variance d'une variable exponentielle T de parametre a sont données par

1 1
E(t)=—, Var(1) = -
a a

Les propriétés suivantes des variables exponentielles, absence de mémoire, mi-
nimum et somme de variables indépendantes, joueront un role crucial dans la
suite.

PropPosSITION 2.2.2 (absence de mémoire) Une variable aléatoire T a densité est
exponentielle si et seulement si

Vs>0,Vt>0, P(t>t+s|t>t)=P(t>59).

Cette propriété permet de poser Ty = 0, c’est-a-dire de supposer qu’'un client ar-
rive a I'instant 0.

Démonstration. A faire en exercice. O

PrOPOSITION 2.2.3 Si T; et T, sont deux variables exponentielles indépendantes
de parametres a; et ap, alors la variable inf(t,, T2) suit une loi exponentielle de
parameétre a + a,. De plus,

a

P(ti<1) = .
ay +ar

Démonstration. A faire en exercice. O
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2.2. Processus de Poisson

PROPOSITION 2.2.4 La somme de n variables aléatoires indépendantes de loi ex-
ponentielle de parameétre a suit une loi (appelée loi Gamma de paramétres n et a)

dont la densité est -
(ax)™ " 4
X)=a———e 1,>0.
fn( ) (n — 1)! x=0

En particulier, pour tout n = 1, la variable aléatoire T,, a la densité f,, ci-dessus.

Démonstration. f,(x) est la convoluée n-fois de la densité exponentielle f;(x).
La démonstration est facile par récurrence sur n. O

Pour un temps ¢ fixé, on va s’intéresser a la variable aléatoire N; égale au nombre
de clients arrivés dans 'intervalle 0, ] :

Ny = Z leSt-

m=1

N; est une variable aléatoire discrete a valeurs dans N. On I'appelle fonction de
comptage du processus au temps .

PROPOSITION 2.2.5 La variable aléatoire N;, fonction de comptage d’un processus
de Poisson de parametre a, suit une loi de Poisson de paramétre at.

Démonstration. L'événement {N; = n} est égal a {T,, < ¢} et on connait la densité
deT,.Onadonc:

P(N;=zn)=P(T, =1)

t anxn—le—ax
[ttty
o (@m-1)!

. , . nil —
et en intégrant par parties en posant du = h dxetv=a"e %

antne—at
=———+P(Tp <1)
al’ltl’l'e—at
= ———+P(N;=n+1).
n:

Finalement
at"

n!

PIN;,=n)=PN;=n)—-PWN;,=2n+1) = I~ -

La loi des instants de saut Ty, T,..., Tx d’'un processus de Poisson se déduit faci-
lement de celle des (T;)1<j<k :

11



Chapitre 2. Processus markoviens de sauts

PROPOSITION 2.2.6 Laloidu vecteur (T, T»,...,Ti) des k premiers instants de saut
d’un processus de Poisson a pour densité

k

—art,
f(tl;tZ,---,tk) =a“e 10<t1<t2<---<tk .

Démonstration. Laloide (T, T»,...,Ty) se déduit de celle de (11, T2,...,Tf) par le changement de
variables (uy, uy,...,ug) — (£, t2,..., ty) défini par

nh = uw uy = n
trp = Up+us U, = 1tr—1N
Ik = Urtuz+---+ug U = Ip—1tr-1

C’est un difféomorphisme de classe ¢'deD={0<t1<fr<...< fr}dans A = (Ri)k. Son jacobien

vaut 1 (systeme linéaire triangulaire), le théoreme de changement de variables donne pour h
fonction borélienne positive

E[h(T1,To,..., T =E[h(t1, T1 + T2, Tr -0 4+ Tg)]

k
=f(R*)kh(u1,u1+u2,...,u1 +etup) [[ae™ ™ duy ... duy
+ i=1

=f h(f1,ta,..., te) e~ “*a* dey ... de
D

Ju

Bt ) Toc <tycsr e gk dr, ...dty. O
s

Les instants de saut d'un processus de Poisson vérifient la propriété intéressante
suivante : lorsqu’on sait qu’exactement n sauts ont eu lieu dans 'intervalle [0, ¢],
la distribution de ces sauts dans [0, 7] est celle de n points tirés uniformément au
hasard dans cet intervalle :

THEOREME 2.2.7 Conditionnellement en {N; = n}, la loi du vecteur (T1,T>,...,Ty)
des n premiers instants de saut d’'un processus de Poisson est la méme que celle
du réordonnement par ordre croissant d'une suite de variables aléatoires indé-
pendantes de méme loi uniforme sur [0, t].

Autrement dit : si on tire des variables aléatoires X1,Xo,...,X; indépendantes de
loi uniforme sur [0, t] et si on les réordonne en posant

Y= min X; <Yy <:-- <Y, = max X;,
1<i<n 1<i<n

alors la loi conditionnelle de (T, T»,...,T,) sachant N; = n est la méme que celle
de (erYZ) ces yYn)

Démonstration. La densité de probabilité du vecteur aléatoire (T, T»,..., T) étant donnée par la

12



2.2. Processus de Poisson

proposition 2.2.6, on calcule pour & fonction borélienne positive
E[R(T1,T2,...,Ty) In,=n] = E[A(T1, T2, ..., Tp) L1, <t<T,,4]

:j(\R )n+1h(tlrt2r---ytn) ]-tnSt<tn+1
+

—at, n+1
e “ntlg lo<t <tr<..<tpi: dnide...dy4.

En intégrant en f,4; on obtient

E[h(TlvTZy-'-’Tn) 1N,=n] :f h(tl»th---»tn) 10<l‘1<t2<...<tn5t dtldtzdtl’l

+)

o 1
f e 41 gntlqy

t
:_/(‘R )nh(tl)th---)tn) 10<t1<t2<...<tnst
+

e Y g"ddty...dt,.

On divise cette expression par P(N; = n) = e~ (ar)"/n!, d’ o1 'espérance conditionnelle

n
E[h(TerZ’---’Tn) |N[ = n] :Lﬂ h(tl,tZ)--"tn) t_" 0<ti<Br<..<tp<t dtl dtn

La densité du vecteur (T, T,,...,T,) conditionnellement en N; = n est donc

gty t2,...,ty) = t_” 0<t1<tr<..<tp<t -

Il reste a vérifier que g est aussi la densité du réordonnement de n points tirés uniformément
au hasard sur [0, t]. La densité du vecteur (X1,X»,...,X;) est t~" sur le pavé [0, t]”, on subdivise
celui-ci en n! secteurs (Si)1<k<n correspondant aux différentes permutations des (x;) et on fait
sur chaque secteur le changement de variable (xy,...,x;) — (¥1,...,¥») (téordonnement par ordre
croissant), dont le jacobien vaut 1 :

1
E[h(Yl,...,Yn)]Z f h(xg(l),...,x(,(n))—ndxl...dxn
1<k=n!YSk t

1
=n!f h(yv,...,yn) - dy1...dyn,
0<y1<...<y¥n t

d’ou le résultat. O

Le résultat précédent est a la base du test de Laplace utilisé en fiabilité (voir cha-
pitre 5). On l'utilise également pour calculer les probabilités P(N, = k | N; = n)
avec0<k<=net0<u<t.LesX; étant tirées uniformément au hasard sur [0, t],
chacune d’elles a probabilité u/t de tomber dans [0, u]. La loi du nombre d’entre
elles qui tombe dans [0, u] est donc binomiale de taille n et de parametre u/t.

P(N, =k|N;=n)=CF (%)k (1- %)n_k.
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Chapitre 2. Processus markoviens de sauts

Plus généralement, conditionnellement en {N; = n}, la répartition des n instants
de saut dans les k intervalles ]t;_1, tj]1<j<k, OU tp =0< f; < --- < . = t, Suit une
loi multinomiale :

(2.1) P(Ntl = nl!th _Ntl = nz;---rN[k _N(tk—l) = ng | Nt =n)

k :
n! Li—ti_ 1\
= ||(l ! ) avec n=np+ng+--+ng.
nilnp! . ongl t

Nous allons maintenant nous intéresser a N; en tant qu’application de R, dans
I'ensemble des variables aléatoires a valeurs dans N. A chaque temps ¢ on as-
socie une variable aléatoire discrete a valeurs dans N. On dit que (N;);>o est
une processus a temps continu dont 'espace d’états est N. Pour chaque expé-
rience w, la fonction de R, dans N qui a ¢ associe N;(w) est une fonction crois-
sante, constante par morceaux, qui part de 0 et qui saute de +1 en chaque instant
d’arrivée T, (w).

Voici une deuxieme caractérisation du processus de Poisson faisant intervenir la
fonction de comptage au lieu des intervalles interarrivées :

THEOREME 2.2.8 La fonction de comptage (N;);cr, d’un processus de Poisson de
parameétre a est a accroissements indépendants :

Vk =2, Vig<t)<...<ty, lesva. (N; —Ny,_,)1<i<kx sont indépendantes

et pour tous t > 0 et s > 0 la variable N;,; — N suit une loi de Poisson de para-
metre at.

Réciproquement toute fonction de comptage ayant ces deux propriétés définit
un processus de Poisson de parametre a : les intervalles interarrivées sont des
variables indépendantes exponentielles de parametre a.

Un processus de Poisson de parametre a peut donc étre défini

— soit a partir de ses instants de sauts, en disant que la suite des 1; = T; —T;_;
est une suite de variables aléatoires indépendantes de méme loi exponen-
tielle de parametre a,

— soit a partir de sa fonction de comptage N(f), en disant que N(#) est a
accroissements indépendants et que pour tout couple (z,s) de réels (¢ =
0, s > 0) l'accroissement N(# + s) — N(#) suit une loi de Poisson de para-
metre as.

Démonstration. On veut montrer que Yk = 1 pour toute suite croissante de réels 0 = tp < #; <
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2.2. Processus de Poisson

t <...< ty et pour toute suite (n1,n2,...,n;) d'entiers =0,

P(Ntl =n; le‘Z _Ntl :nzn-..ﬂNtk —N[k71 = nk)

n n n
_ (at;)™ eiatl < [a(ty —£1)]"? e*a(tZ*tl) e [a(tk - tk—l)] k e*“(tk*tk—l).
ny! ny! ny!

Posons n = n1 +ny +--- + ny et conditionnons par {N;, = n} pour utiliser I'égalité (2.1) :

P(]'\]l‘l :nlnNtz_Ntl =n2ﬂ...ﬁNtk _Ntk—l =nyg)
=P(Ny =m ﬂNtz_Ntl :I’lgﬁ...ﬂNtk—N”k1 =ni |Ntk =n) P(Ntk —n)

k
_( n! H t, 1 nl) (atk) oAtk (en posant o = 0)
nilng!...ongl;

_ (H ani(ti - ti—l) i ) —aty ﬁ(anl (tl — i 1) e*a(fi*ti—l))
i=1 n;! i=1

l'

Réciproque : on suppose la fonction de comptage N a accroissements indépendants et on calcule
pour0< ) <t <...<ft, lafonction
Gt t2,..., ) =PO<Ti=fhi<To<tr<..<tp 2<Tr 1 <tp_1 <Tp <t3)
=P(N,-No=1nN, -Nj, =1n...
n Ntk—l - NZk—Z =1n Ntk - Ntk—l = 1)
=anhe ™ xa(t, — ;) e 20 «
X A(ty-1 = tg—g) € 1 7Ik2) 5 (1 — e i)y
=a 11ty = 1) (o) — tp-p) (€7 —eTR),

La suite des (T;) étant p.s. strictement croissante, la loi du vecteur Ty, Ty,..., Ty est portée par le
sous-ensemble {0 < t; < f, <...< f} de R'j. Sur cette partie, G est de classe €*° en 11, f,..., t; et

représente « essentiellement » la fonction de répartition F du vecteur T1,T»,..., Tk, précisons les
chosesdanslecask=3:

G(t1,12,13) =P0<Ti <1 <Ta <ty <T3<t3)
=PM=sHnTe<strnT3<tz3nN (T2 >t NT3> 1))
=P(Ti=HNTy<tr,NT3<t3)
-P(Ti=tunTa<strnTy3<t3)N(Tr <t UT3 < 1))
=F(t1,12,13) —P(To=t1NT3<t3) U (T = HUT3 < 1))
=F(ty, 12, 13)
—PT=t1NT3<t3)—P(T1<t1NT3<t)+P(Tr <1 NT3 < 17)

ce qui établit, dans le cas k = 3, que G et F ont donc méme dérivée par rapport a t3, f2, t;. Il en est
de méme dans le cas général :

akF(tIJIZy---rtk) _ akG(tl)t27---ytk) _ ake
0t10t,...01; 0110t,...01;

—aty

Laloi du vecteur Ty, Ta,..., Ty admet donc une densité sur R€ de la forme

k ,—at
f(tlr tZr‘--th) =a € Ak 10<[1<t2<...<tk;

on reconnait la loi trouvée a la proposition 2.2.6, ce qui établit la réciproque. O
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Chapitre 2. Processus markoviens de sauts

Enreformulant le résultat de la proposition précédente on montre que pour toute
suite strictement décroissante d’instants s, ¢, 1, fo, ..., I} et toute suite décrois-
sante d’entiers j, i, iy, i2,..., if :

P(Ns:let:i)Ntl :il,...,Ntk :ik):P(Ns:j|Nt:i):P(N8—t:j_i)

Le processus a temps continu (N;);>o Vérifie une propriété de perte de mémoire
identique a celle vue pour les chaines de Markov. Il s’agit de la propriété de défi-
nition des processus de Markov homogenes en temps continu que nous retrou-
verons dans le paragraphe suivant. Ceci constitue une troisieme caractérisation
du processus de Poisson :

THEOREME 2.2.9 Une fonction de comptage (N;);cRr, est celle d’'un processus de
Poisson si et seulement si elle vérifie

(2.2)
VkeN*, Vs>0,Vt1 <t <-- < (réels>0), Vj,Viy<ip---<ir<i (entiers),

P(Npys =1+ IN;=0,Ny =ig,...,Ny =11) =PNpys =1+ j [N, =1)

J
_ (as) _.¢
j!
Démonstration. Pour toute suite strictement décroissante d’instants ¢y, o, ..., Iy, ¢ et toute suite

croissante d’entiers i1, i>,..., i, i, calculons la probabilité :

P(Nt+s:i+j |Nt =i)Ntk :ik)---thl :il)
=PMN;+s—Ng=jIN; =Ny =i —ig,...,Ngy, =Ny =2 =11, Ny —Nog = i3)

N étant a accroissements indépendants :
=PWMNp+s =N =) =PNpys =Ny =j IN, =N =) =P(Npys =i +j [N, =10).

Enfin, les accroissements suivant des lois de Poisson, on a

(as)!
Jj!

—as

P(Nyys— Ny =j) =

Réciproquement, si N vérifie la propriété de Markov ci-dessus, en utilisant1'égalité P(A, NA,_1 N
--NA;) =PADPA2|A})...P(A, |Ap—1N---NA;) on obtient :

PN, =Nz, =ngn...Nn Ny, =Ny =nan Ny =ny)
=P(Ny =n1) x -+ x PNy, =Npy, =na [Ny =n1)

xP(Ny =Ny =ng|Ny =Ny, =ng_1n...nNy =n1)
=P(Ny =n1) x---xP(Ny, =n1+n3 | Ny =ny)

xP(Ny =ng+---+n1|Ny_, =ng_1+---+n1n...0Ny =ny)
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2.2. Processus de Poisson

soit, en utilisant (2.2) :

n ny n
[atl] 1 e_arl % [a(tZ - tl)] 2 e_a(tz_tl) X oo x [a(tk - tk*l)] k e_a(tk_tk—l)
np! ny! ng!

donc N est bien un processus de Poisson (cf. théoreme 2.2.8). O

Le processus de Poisson se retrouve dans de nombreuses applications. On a déja
parlé des flots d’arrivée de clients dans les files d’attente. Le processus de Pois-
son modélise également les temps de désintégration d’'une particule radioactive.
Ce modele se retrouve dans les appareils de radiographie en médecine nucléaire.
Les temps de passage de voitures sur une route a grande circulation non embou-
teillée constituent également un processus de Poisson.

Terminons en donnant deux résultats sur la superposition de processus de Pois-
son indépendants et sur 'opération inverse de décomposition.

THEOREME 2.2.10 Soient (N}) et (N?) deux processus de Poisson indépendants (i.e.
tout événement lié a I'un est indépendant de tout événement lié a I'autre), de
parametres respectifs a, et a,, on appelle superposition de ces deux processus le
processus somme :

VteR,, N,;=Nj]+N-
Alors (N;) est un processus de Poisson de parametre a = a, + a,.

Inversement, si (N;) est un processus de Poisson de paramétre a, on associe
aux instants de saut (T,),en) de ce processus une suite de variables de Bernoulli
(Yn)nen) indépendantes, indépendantes du processus (N;) et de méme loi :

VneN, PY,=1)=p, PY,=0)=1-p.

Soit (N}) (resp. (N?)) Ie processus dont les instants de saut sont les (T,) tels que
Y, =1 (resp. Y, = 0), alors (N}) et (N?) sont des processus de Poisson de para-
metres a; = ap etay = a(l — p) respectivement.

Exemples d’application :

— sur une voie a double sens, si les flux de véhicules venant de droite et de
gauche sont deux processus de Poisson de parametres a; et a, respecti-
vement, le flux global de véhicules est un processus de Poisson de para-
metre a; + a;

— si le flux total de voitures est un processus de Poisson de parametre a et
que 5% des voitures sont rouges, le flux de voitures rouges est aussi un
processus de Poisson (de parametre 0,05a).
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Chapitre 2. Processus markoviens de sauts

Démonstration. 1) Superposition : il est clair que le processus somme (N;) est a accroissements
indépendants. D’autre part la somme de deux variables de Poisson indépendantes, de parametres
A et [ est une variable de Poisson de parametre A + p (2 vérifier directement ou en utilisant les
fonctions génératrices), donc pour tous t,s > 0, N3 Tis —N*;’ somme de deux variables de Poisson de
parametres a, s et a,s, suit une loi de Poisson de parametre (a; + a»)s et d’apres le théoréme 2.2.8
(N?) est un processus de Poisson de parametre a; + as.

2) Décomposition : il est facile de voir que la suite des intervalles interarrivées du processus (N})
(ou (N?)) est une suite de variables indépendantes. Il reste a vérifier que ces intervalles interarri-
vées suivent des lois exponentielles de méme parametre. Supposons que Y, = 1 et placons nous
al'instant T, notons 1 l'intervalle interarrivée suivant pour le processus (N}), sa loi est donnée
par:

3

Pt>0)=) Pa>tNYy41=0-NYyik1 =0NY,up = 1)

T‘
I

P+ +1%>tNY:1=0--NY;04.1=0NnY, 4 =1)

[
[18

=
I
—

Pt ++T>01-p)*1p (indépendance)

[
[VJ8

=
1l
—_

k-1
1 pk- lpf ((c;cu) o e “du  (loi gamma)

Il
i [\/]8

00 1 k-1
:f ape Z d-puw)” du  (Tonelli-Fubini)
: & k-1

oo
=f ape eI Pt dy
t
oo
:f ape “P*du.
t

Donc T est bien exponentielle de parametre ap et (N%) est un processus de Poisson de para-
metre ap. O

2.3 Définition d’'un processus markovien de sauts

Nous allons chercher a modéliser un systeme qui est a valeurs dans un espace E
fini ou dénombrable et qui évolue dans le temps. A chaque instant, le systeme
est décrit par une variable aléatoire a valeurs dans E. Alors que pour une chaine
de Markov le temps est supposé discret, pour un processus markovien de sauts
le temps est continu. On note X; la variable aléatoire représentant le systeme au
temps ¢ (¢ € R;). On appelle processus aléatoire la famille de variables aléatoires
(X¢)rer, - Un processus de sauts est un processus qui évolue par sauts successifs a
des instants aléatoires. Un processus de Markov est un processus aléatoire dont
laloi du processus apres un instant t dépend du passé du processus uniquement
a travers la connaissance de X;.
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2.3. Définition d’un processus markovien de sauts

2.3.1 Définitions

DErFINITION 2.3.1 La famille (X;);=¢ de variables aléatoires a valeurs dans un es-
pace fini ou dénombrable E est appelée un processus de sauts si pour tout
de I'espace de probabilité, la fonction de R, dans E qui a t associe X;(w) est
constante par morceaux, continue a droite, limitée a gauche et la suite des ins-
tants de saut de cette fonction est une suite infinie qui tend vers I'infini.

Lhypothese de continuité a droite et de limite a gauche est assez naturelle. On
exclut de notre étude des processus dont les temps de sauts s’accumuleraient
sur un temps fini.

Notons (T,);=0 la suite des instants de saut du processus (X;);>o. Nous allons
nous intéresser a une classe de processus de sauts appelés processus markoviens
de sauts. Ces processus évoluent de la maniere suivante. Si le processus se trouve
dans I'état x a l'issue du saut intervenant a l'instant T,, le temps de séjour dans
I'état x (T, +1 —T,) suit une loi exponentielle de parametre A(x). Le parametre de
cette loi dépend de 1'état x o1 le processus se trouve. A part cette dépendance
del'état x, T,,, 1 — T, estindépendante du passé du processus. A l'instant T,,; 1, le
processus saute de I'état x al’état y (x # y) avec une probabilité Q(x, y) indépen-
dante de T, +; — T, et du passé. L'évolution du processus est donc déterminée par
une suite de réels (A(x)), (x € E) et une matrice markovienne (Q(x,y), (x,y) € E?),
telle que Q(x, x) = 0 pour tout état x. On supposera toujours que la suite (A(x)) xeg
est bornée et formée de nombres strictement positifs. De maniére plus formelle,
on peut donner la définition suivante :

DEFINITION 2.3.2 Soit (X;);>0 un processus de sauts a valeurs dans un espace E,
d’instants de sauts (T,) ,en. (X¢) 1=0 €st un processus markovien de sauts s’il existe

— une suite bornée de nombres réels (A(x), x € E) strictement positifs,

— une matrice markovienne (Q(x, ), (x,y) € E?) de diagonale nulle,
tels que pour tout entier n, pour tous X,+1,Xn,Xn-1..-,Xo € E et pour tous
Un+1,Un, Up-1...,Up ERy ¢

PXt,,, =Xn+1, Tns1 = Tu > up1 1 X1, =X, T =Tno1 > up,
X1,y =Xn-1, Tno1 = Tu2>up_2,..., X1, = x1, T1 = To > 1y, X1, = X0)

= exp(_)\(xn)un+1)Q(xn»xn+1)-

2.3.2 Exemples
Processus de Poisson

Nous avons étudié au chapitre précédent le processus de Poisson. Nous avons vu
que le processus de comptage (N;);>( est un processus aléatoire a valeurs dans N,
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Chapitre 2. Processus markoviens de sauts

qui vaut 0 au temps 0 et qui saute de 1 a chacun des instants aléatoires T; qui
caractérisent le modele. Quand le processus est dans I’état i, il saute en i + 1 au
bout d'un temps aléatoire de loi exponentielle de parametre A.

Processus a deux états

Considérons une machine qui peut étre soit en état de marche, soit en panne. On
note X; la variable aléatoire égale a 0 si la machine est en panne a l'instant ¢ et
égale a 1 si elle est en état de marche a 'instant ¢.

Nous faisons 'hypothese que les temps de fonctionnement de cette machine
sont des variables aléatoires de loi exponentielle de parametre A et que les temps
de réparation sont des variables aléatoires de loi exponentielle de parametre .
Nous supposons également toutes ces variables aléatoires indépendantes.

Le processus (X;);>o est un processus markovien de sauts a valeurs dans {0, 1}.
Les parametres qui interviennent sont: A(0) = p, A(1) = A, Q(0,1) =1, Q(1,0) = 1.

File d’attente a un serveur

Considérons un guichet ou un serveur rend un service. Les clients arrivent a des
instants successifs selon un processus de Poisson de parametre A. Ils se mettent
en file d’attente et sont servis selon leur ordre d’arrivée. Le temps de service
pour chaque client est une variable aléatoire de loi exponentielle de parametre L.
Toutes les variables aléatoires qui interviennent sont indépendantes.

Considérons le processus (X;);>¢ qui représente le nombre de clients en attente
(y compris le client en train d’étre servi) au temps ¢. C’est un processus de sauts
a valeurs dans N. Quand un client arrive, le processus saute de +1 et quand un
client s’en va a la fin de son service, le processus saute de —1.

Si a un certain instant le processus saute et prend la valeur i (i > 0), il va rester
en i un temps aléatoire qui vaut inf(U;,U,) ot U; est le temps nécessaire pour
I'arrivée du prochain client et U, est le temps nécessaire pour la fin du service
en cours. Or ces variables aléatoires sont indépendantes de lois exponentielles
de parametre A et p (cf. Prop. 2.2.2). Le temps de séjour dans I'état i sera donc
une variable aléatoire de loi exponentielle de parametre A + p (cf. Prop. 2.2.3). La
probabilité que le saut suivant soit de +1 est la probabilité que U; soit plus petite
que Uy, c’est-a-dire A/ (A +p), tandis que la probabilité pour que le saut soit de —1
vaut de la méme maniere p/ (A + p) (cf. Prop. 2.2.3).

Si a un certain instant le processus saute et prend la valeur 0, il va rester en 0 un
temps aléatoire qui vaut U; o1 U; est le temps nécessaire pour l'arrivée du pro-
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2.3. Définition d’un processus markovien de sauts

chain client, c’est-a-dire un temps aléatoire de loi exponentielle de parametre A.
Le saut a I'issue de ce temps est nécessairement de +1.

On a bien la description d'un processus markovien de sauts.

2.3.3 Propriété de Markov

La définition d'un processus markovien de sauts implique la propriété de Markov
suivante.

PROPOSITION 2.3.3 Si (X;)>0 est un processus markovien de sauts a valeurs dansE,
il satisfait la propriété de Markov suivante : pour tout n = 0, pour toute suite crois-
sante d’'instants 0 < t1 < tp < ..., t; < tp+1 € Ry et toute suite x1,X2,..., X5, Xn+1
d’états deE,

P(Xt,,1 = Xn+1 | Xty =Xny- o, Xy = X1,X0 = X0) = PXy,,, = Xn+1 | Xt, = Xn)
=PXy,, -1, = Xn+1 1 Xo = Xp).

Nous allons juste donner une justification heuristique de cette proposition. Si Ty
est I'instant de saut du processus qui précede I'instant ¢, d’apres la définition, le
processus perd la mémoire de ce qui s’est passé avant Ty, sachant qu'il se trouve
dans I'état x,, a cet instant. Donc la seule influence éventuelle du passé de ¢, est
le temps aléatoire déja passé dans I'état x,. Mais la loi de Ty, — Ty est une loi
exponentielle de parametre A(x,). On sait que le processus n’a pas sauté entre Ty
et t,, donclaloide Ty, —t, estlaloide (Ti41 — Tk —t,+Tx) sachant que T, — Tk
est plus grande que ¢, — T;. On sait que c’est encore une loi exponentielle de
parametre A(x,). Donc a partir de £, sachant que le processus est dans I’état x;,,
le processus oublie tout le passé.

Les quantités P(Xs = y | X; = x) ne dépendent que de x, y et t —s. On note alors :
PXs =y X =x) =PXs—r =y | Xo =x) =Ps—s(x,).

DEFINITION 2.3.4 On appelle probabilités de transition la famille (P;);cr, de ma-
trices markoviennes définies par

V(x,y)€E%, Pi(x,y)=PX,=y|Xp=x).

Pour tout réel positif ¢, la matrice P;(.,.) est une matrice markovienne (on dit
aussi matrice stochastique). Lhypothese de continuité a droite sur les trajectoires
entraine que, pour tous x et y, les fonctions qui a ¢ associent P;(x, y) sont conti-
nues a droite. En particulier, si on désigne par I la matrice identité sur E x E, on a
pourtous x et y de E :

th%l Pi(x,y) =1(x,y).
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Chapitre 2. Processus markoviens de sauts

Les probabilités de transition satisfont I'’équation de Chapman-Kolmogorov sui-
vante.

ProprosITION 2.3.5 Si (P(.,.))s>0 est la famille des matrices de transition d'un pro-
cessus de Markov homogene, pour tous temps s et t et pour tous états x et y, on
a la relation :

Piis(x,y) = ) Pi(x,2)Ps(z,y).

z€E

Matriciellement cette égalité s’écrit : Py, = P; Ps.
Démonstration.

Pris(x, ) =PXsy5s =y | Xo = X)
=) PXps=ynX;=2z1Xo=x)

z€eE
:ZP(XI+S:ylxt:Z)XOZ-x)P(XI:Z|X0:x)
z€E
=) PX;=y|Xo=2)PX; =2 |Xg=x).
z€E

2.4 Matrice génératrice

On va définir une nouvelle matrice, la matrice génératrice, qui caractérise le pro-
cessus.

2.4.1 Définitions

PROPOSITION 2.4.1 Considérons un processus markovien de sauts (X;);>o associé
a la famille bornée de paramétres strictement positifs (A(x),x € E) et a la matrice
markovienne de diagonale nulle (Q(x,y), (x,y) € E?). Les probabilités de transi-
tion t — P;(x,y) de ce processus sont dérivables a droiteen O eton a:

1
Vix,y) €EXE, (x#y) lim —Pi(x,y) = AXQx, ),
VxeE, tlim %(Pt(x,x) -1) = —=-A).

Démonstration. Soient x et y deux états différents. On note P,(.) la probabilité
conditionnelle P(. | Xy = x) et on considere les deux premiers instants de saut T,
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2.4. Matrice génératrice

(T1=tcarx#y)etTs:

P.X;=y)=PxX;=y, T1=1)
=Py(T1 =6, X7, =y, To>0)+Py(T1 =1, X, =y, T2 <1)
=Py =6, X7, =y, 1+2>0)+Py (1=, X, =y, T1 + T2 < 1).

Evaluons le premier terme en utilisant le fait que 1, et T, sont deux variables
exponentielles indépendantes :

P (t1<t,Xp, =y, T1+T2>1)=Q(x,y) A(x)e AU )\(y)e_My)“ dudv

fust,u+v>t}

MY __ (o= AW _ oA 1) gi \(x) # A(y)

— 0, y) AX)-A(y)
Qlx,y {)\(x)te—)\(x)t siA(x) =A(y)

=Qx, ) Ax)t +o(1).

De méme montrons que le second terme est infiniment petit devant ¢ :

Py(t1=6,Xe=y, 1+ T2 =Py(11=4, T2=1)
<) Pi(t1<t, X, =2, T2=<1)

z€E

<) 1-e*¥HQ(x,2) (1 -e ¥
z€E

<Y A®)Qx,2) A=)t
z€E

<Ax)Mt> avecM majorant des (A(z),z € E).
En définitive on trouve :

PX;=y1Xo=x)=Ax)Q(x,y)t +0(1).

D’autre part danslecas y = x :
P, X;=x)=Py(T1 >0)+P;(Ty =¢, To=t, Xy =Xx).

Le premier terme vaut P, (T; > t) = e ™7 = 1 — \(x)t + o(¢t) et le second est infi-
niment petit devant ¢ :

P.(Ty<t,To<t,X,=x)<P.(Ty<t, Ty<1)
<Py (11t 12=1)

< Ax)M22.
On en déduit que :

PX;=x|Xg=x)—-1=—-Ax)t+o0(1). O
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Chapitre 2. Processus markoviens de sauts

DEFINITION 2.4.2 On appelle générateur (ou matrice génératrice) d’'un processus
markovien de sauts de probabilités de transition (P;);>o la matrice A dérivée a
droite en 0 de (P;) :

V(x,y) €E? A(x,y) = lim

Pi(x,y)-1(x,y) | A®Qx,y) six#y,
t | AW six=y.

On vient de voir que pour un processus markovien de sauts cette matrice existe
toujours.

2.4.2 Exemples
Processus de Poisson

Pour tout x entier, A(x) est égal a A et Q(x,x + 1) égal a 1. D’ou1 pour tout x :

Vy<x Alx,y)=0,
Vx Alx,x)=—-\N et A, x+1)=A,
Vy>x+1 A(x,y)=0.

On a le générateur :

-A A 0 0
0O -A A O
0 0 0 -A
Processus a deux états
On trouve :
A(0,0) = —p A(0,1) = v
A(1,0) = A AL, = —A
Le générateur vaut :
| "H M
=% )

File d’attente a un serveur

On trouve :

A(0,0) =-A A(0,1)=A
An,n-1)=p A(n,n)=-A+n) An,n+1)=A sin>0.
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2.4. Matrice génératrice

2.4.3 Equations de Kolmogorov

Le calcul direct des probabilités de transition est souvent difficile, voire impos-
sible. Le théoreme suivant va donner un moyen de calculer les probabilités de
transition a partir du générateur.

PROPOSITION 2.4.3 (Equations de Kolmogorov) Considérons un processus mar-
kovien de sauts de probabilités de transition (P;);>o et de générateur A. On a la
relation :

(P;)' =P,A=AP,

(P;)" désigne la dérivée de P, au point t strictement positif et la dérivée a droite

sitvautO:
Piis(x, ) =Pi(x,y)

N

(Py) (x,y) =lim
s—0

Démonstration. Nous ne ferons la démonstration que dans le cas ou E est fini. La
formule de Chapman-Kolmogorov s’écrit :

V(x,y) €E%, Pris(x,y) = Y Pi(x,2)Ps(z, ¥).

z€E

On peut dériver cette formule par rapport a s et faire s = 0. On trouve (P;)' = P;A.
La seconde formule s’obtient en dérivant par rapporta t et en faisant t =0. [

Si on connait le générateur d'un processus de Markov, on peut trouver les pro-
babilités de transition comme solutions d'une équation différentielle linéaire a
coefficients constants. Si I'espace E est fini on a la formule :

k
P, =e=Y Lk,
k=0 k!

Le générateur du processus détermine les probabilités de transition, donc la loi
du processus. En pratique, lorsque E est fini, le calcul explicite de e’ est possible
si on sait diagonaliser la matrice A.

Exemple du processus a deux états : E est égal a {0, 1} et le générateur du proces-
sus existe et vaut :
A= ( —uou )

A=A

En diagonalisant A (a faire en exercice) on trouve :

t=

TA+p A Aem MR A
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Chapitre 2. Processus markoviens de sauts

2.5 Propriétés asymptotiques

2.5.1 Mesures invariantes, réversibles

L'analyse du comportement asymptotique passe par I'identification d'une pro-
babilité invariante sur I’espace des états E. Une probabilité it sur E est invariante
par le processus si pour tout temps ¢ et tout état y de E on a nP; = m soit:

Y m@)P(x, ) = n(y).

x€E

c’est-a-dire que si 7 est la loi de probabilité de Xy, alors pour tout temps ¢ la loi
de X; est encore 7.

En dérivant cette relation en ¢ et en faisant ¢ égal a o, on arrive a la définition
suivante.

DEFINITION 2.5.1 La probabilité n sur E est dite invariante pour un processus de
Markov de générateur A si et seulement si A = 0 soit :

VyeE, ) m@A(x,y) =0,

x€E

Grace aux équations de Kolmogorov, on démontre que si m est une probabilité
invariante au sens de la définition ci-dessus, on a bien :

Vi=0,VyeE, ) nx)Pi(x,y)=mn(y).

x€E

Lidentification d’'une probabilité invariante nécessite la résolution d'un systeme
linéaire de taille égale au nombre d’éléments de E.

DEFINITION 2.5.2 La probabilité nt sur E est dite réversible pour un processus de
Markov de générateur A si et seulement si :

V(x,y) eExE, mnx)Alx,y)=n()A(,x).

ProposiTION 2.5.3 Toute probabilité réversible pour un processus est invariante
pour ce processus.

Démonstration. Sim estréversible, on a pour tout y dans E :

Y AR, y) =) (YA, x) =n(y) ) A(y,x) =0. m

x€E x€E x€E

En pratique pour chercher une probabilité invariante, il est recommandé de com-
mencer par chercher une probabilité réversible, plus facile a identifier quand elle
existe.
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2.5. Propriétés asymptotiques

2.5.2 Exemples
Processus de Poisson

L'équation d’invariance donne : Vi =0, mn(i) =n(i +1). Il n’existe pas de proba-
bilité invariante.

Processus a deux états
L . PR [ -n p
a matrice generatrice vaut : A A |
On trouve comme unique probabilité invariante : 7(0) = F)\u etm(l) = Fuu
File d’attente a un serveur
La matrice génératrice est de la forme :
-A A 0 0 0
o —A+p A 0 0
A= 0 v —(A+pw A 0
A

0 0 M -+

Les équations de réversibilité s’écrivent :

Vx=1, mnx-DA=nx)p

X

Vx=0, n(x)= T[(O)E-

Il existe une probabilité réversible si la série de terme général m(x) est conver-
gente, c’est-a-dire si A < p. Cette probabilité réversible s’écrit alors :

Vx>0 7(x)= (1— %) (%)x

2.5.3 Théoreme ergodique

DEFINITION 2.5.4 Un processus markovien de saut de matrice génératice A est dit
irréductible si pour tous états x et y (x # y), il existe des états x1, X2, ... X, tous
différents tels que :

A(x,x1)A(x1,x2) .. . AlXp—1,Xn)A(Xxp,y) > 0.
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Chapitre 2. Processus markoviens de sauts

Ceci signifie que 'on peut passer (en plusieurs étapes) de n'importe quel état x
a n'importe quel état y avec une probabilité strictement positive. Cela est vrai
pour le processus a deux états dont les éléments de la matrice génératrice sont
différents de 0 et pour le processus associé a une file d’attente. Ce n’est pas vrai
pour le processus de Poisson (le processus X; est croissant).

Nous admettrons le théoréme limite suivant.

THEOREME 2.5.5 Supposons que le processus markovien de sauts (X;)>q est irré-
ductible sur E et admet une probabilité invariante n, alors :

— cette probabilité invariante est unique,

— V(x,y) €E%,  lim; 0o P;(x,y) =1(y),

— Vye€E, WMy o0 1 Jio.4y Ixe=y ds = () p.s.

Le comportement stationnaire du processus est donc décrit par 'unique proba-
bilité invariante quand elle existe.

Ce résultat exprime qu’au bout d'un certain temps, le systeme se stabilise dans
un régime d’équilibre appelé «régime stationnaire » et que
— la probabilité d’étre dans I'état y en régime stationnaire est donnée par
n(y),
— la proportion de temps passé dans I'état y entre les instants 0 et ¢ est éga-
lement donnée par n(y) lorsque ¢ est assez grand.
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Chapitre 3

Files d’attente

3.1 Introduction

Nous avons vu dans le chapitre 1 qu'une file d’attente est décrite par la loi des
temps d’arrivée des clients, la loi des temps de service, le nombre de serveurs
et la longueur maximum de la file d’attente. Dans ce chapitre nous supposerons
que les clients arrivent selon un processus de Poisson. Nous supposerons que les
temps de service sont des variables aléatoires indépendantes de méme loi, indé-
pendantes du processus des arrivées. Dans un premier temps nous supposerons
que laloi de service est exponentielle. Nous pourrons alors utiliser les techniques
vues au chapitre précédent et calculer explicitement les caractéristiques de I'état
stationnaire quand il existe. Dans le cas plus général d'une loi de service quel-
conque, nous verrons qu’en utilisant une chaine de Markov on peut obtenir des
résultats.

3.2 Files M/M/.

Dans ces files les clients arrivent selon un processus de Poisson de parametre A.
Les temps de service sont des variables aléatoires indépendantes, de mémes lois
exponentielles de parametre u et indépendantes du processus des arrivées. On
note N; le nombre de clients en attente, y compris ceux qui sont en train d’étre
servis, au temps £.

PrOPOSITION 3.2.1 Le nombre N; de clients présents (en attente ou en service) a
l'instant t dans une file M/M/s (s pouvant valoir I'infini) est un processus mar-

29



Chapitre 3. Files d’attente

kovien de sauts a valeurs dans N de matrice génératrice :

An,n+1) = A
A(n,n—1) = pinf(n,s) sin>0
A(n,m) =0 sim#Znzl, etm #n.

Démonstration. Le processus N; est a’évidence un processus de sauts. Les pro-
priétés de perte de mémoire du processus de Poisson et de la loi exponentielle
permettent de montrer que ce processus est markovien. Les valeurs de la matrice
génératrice se calculent sans probleme. O

Il est clair que ce processus est irréductible. Nous avons vu au chapitre précé-
dent, au moins dans le cas s = 1, qu’il admet une mesure réversible unique a
une constante multiplicative pres. Pour chaque valeur de s, suivant les valeurs
de A et p cette mesure réversible est finie ou non. Lorsqu’elle est finie, il existe
une probabilité réversible, donc invariante et le théoreme limite 2.5.5 s’applique.
Le processus (Ny) ;>0 se stabilise sur un état dont la loi est cette probabilité réver-
sible. Les caractéristiques de lalongueur de la chaine dansI'état stationnaire sont
donc données par cette probabilité. Nous allons faire ces calculs pour différentes
valeurs de s.

3.2.1 CasM/M/1

Dans ce cas il y a un seul serveur. C’est la file d’attente la plus simple. Le généra-
teur est donné par :

A
M.

n

VneN, An,n+1)
VneN*, An,n-1)

On obtient comme mesure réversible : m,, = my (%

Cette mesure est finie si A < p et alors 'unique probabilité réversible vaut :
-3
T =1-=||=] .
A

PROPOSITION 3.2.2 Dans le cas M/M/1, le processus (N;);>o admet une unique
probabilité invariante lorsque le parameétre A du processus de Poisson des ar-
rivées est strictement inférieur au paramétre 1 de la loi exponentielle des ser-
vices (c’est-a-dire par unité de temps le nombre moyen d’arrivées est inférieur
au nombre moyen de clients servis). Cette probabilité est une loi géométrique
sur N de parametre a = A/ .

On a montré la proposition :
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On peut montrer que lorsque A est strictement plus grand que p la longueur de
la file tend vers l'infini. Lorsque A est égal a , le processus n’admet pas de proba-
bilité invariante.

Lorsque A est strictement plus petit que p, la longueur (nombre de clients pré-
sents) de la file d’attente en régime stationnaire a pour moyenne et variance :

A A

EN)=——  Var(N)= ——-
1 -3)
]_ JEYAS

H m
Le facteur d'utilisation du serveur (« mean busy period » en anglais) représente
en régime stationnaire le pourcentage du temps ou le serveur est occupé, c’est
donc la moyenne de la variable aléatoire qui vaut 0 avec probabilité my et 1 avec
probabilité 1 — mty. Ce facteur vaut donc 1 — mg, soit A/ .

Une variable aléatoire intéressante est le temps de réponse du systeme c’est-a-
dire le temps total passé dans le systeme par les différents clients. En régime sta-
tionnaire toutes ces variables aléatoires ont méme loi. Si le client trouve a son ar-
rivée n personnes dans la file il passera dans le systeme un temps aléatoire égal
ala somme des temps de service de ces n personnes plus son temps de service a
lui. Ce temps est égal a la somme de n + 1 variables aléatoires indépendantes de
loi exponentielle de parametre p (le temps nécessaire pour finir de servir la per-
sonne en train d’étre servie quand le client arrive est encore une loi exponentielle
de parametre |, d’apres la propriété d’absence de mémoire). Cette loi admet la
densité sur R, (cf. prop. 2.2.4) :

p(p) et

gn+1(x) = Y

En notant N le nombre de clients en attente a ’arrivée du client test et R le temps
total d’attente plus service de ce clienton a:

PR=<1)= ZP(N:n) PR<t|N=n)
n=0

0] t
= Zﬂnf gn+1(x)dx

n=0

00 n na—Hx
(1) e,

t 00 )\n n
= f (1 - —) e h Yy — () dx (Fubini, fonction positive)
0 M n=0 M n!

t
= f (u— Ne Ml dx.
0

On a établi le résultat suivant :

31



Chapitre 3. Files d’attente

PRroPOSITION 3.2.3 La variable aléatoire temps de réponse du systeme (temps d’at-
tente plus service d’'un client en régime stationnaire) suit une loi exponentielle de
parameétre |\ — A, sa densité vaut :

Fx)=@-Ne BN 0.

Le temps moyen passé dans le systeme par un client en régime stationnaire vaut
1/(n—A). Cette quantité dépend de A et de p et pas uniquement du quotient A/ .
Un systeme peut étre presque saturé avec un quotient A/p proche de 1 et une
longueur de file d’attente grande en moyenne mais avoir un temps de réponse
moyen faible.

3.2.2 Cas M/M/oo
Dans ce cas il y a une infinité de serveurs. Le générateur est donné par :

VneN, Am,n+1l) = A
VneN*, A(n,n-1) = np.

PROPOSITION 3.2.4 Dans le cas M/M/oo, le processus (N¢) ;>0 posséde une proba-
bilité invariante unique qui suit une loi de Poisson de parametre A/ .

Démonstration. Une mesure réversible satisfait la relation :

. 1 A\n
vn, mpA=mpp(n+1), dou mn:mo_(_) .
n\ip

Cette mesure est de masse totale finie pour tous A et pu. En la normalisant on
trouve le résultat. O

Dans le cas M/M/oo le facteur d’utilisation (ou la charge de service) est le nombre
moyen de serveurs occupés. Il est égal au nombre moyen de clients dans la file
puisqu’il n'y a pas d’attente. Ce nombre vaut donc A/ .

Le temps moyen de réponse est égal au temps moyen de service et vaut 1/p.

3.2.3 CasM/M/s

Il'y a s serveurs. Le générateur est donné par :

vneN, Am,n+1) A,
VneN*, An,n-1) = uinf(n,s).
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PROPOSITION 3.2.5 Dans le cas M/M/s, le processus (N;);>o posséde une probabi-

lité invariante unique sip = ﬁ est strictement plus petit que 1. Cette probabilité

vaut:

1(7\) i
i = —[—| mo Slj<s,
! il

s()\)j i
i, = —[(—| 7 1] =5,
J st \sp 0 J

s - ZaG 05 56
avec — = Y —|=| +|1-—| =|=].
o ]-:0]! V1 sp) o stip

Démonstration. Une mesure réversible satisfait : m,,_; A = m, pinf(n,s). On en
déduit :

1 1 )\ S+]
m; =m0_—(—) pouri<s et msyj=myg——: (—) .
AR sls/ \u

Sip = A/sp <1, cette mesure est finie et en la normalisant on trouve la probabilité
invariante annoncée. O

Lorsque p = A/su est strictement plus grand que 1, le processus (N;) ;> tend vers
I'infini.
Lorsque A est égal a sp le processus n'admet pas de probabilité invariante.

Lorsque p = A/sp est strictement plus petit que 1, il existe donc un régime station-
naire. Sous ce régime, on peut calculer la probabilité pour que tous les serveurs
soient occupés. Cette probabilité vaut :

S pS SS

& A
= _ = — t - —
; (s ek o Ty avec a . et p ™

Ceci constitue la deuxieme formule d’Erlang (terminologie européenne) ou « Er-
lang delay formula » (terminologie USA).

La charge de service (ou facteur d’utilisation) représente le nombre moyen de
serveurs occupés en régime stationnaire et vaut :

s as—l )

s—1 aj—l 6l
X Goas-n "

. 1mn0+sC:an0(Z
J= : =

s—1 00
a = Zjnj+san:a
j=1 Jj=s

Donc la charge de service en régime stationnaire vaut encore a = A/, chaque
serveur est occupé en moyenne p % de son temps.
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Chapitre 3. Files d’attente

On peut calculer le nombre moyen de clients présents (en attente ou en service) :

Soalmy & aln
E(N) = ——— + | ——
LT T
an 00 ai+sﬂ
—all-— 250 14y 92
(s-Dis—-a)) 3 slst
T[()(/ls+l

a+—— .
(s=D!(s—a)?

Il est intéressant de comparer le comportement d’une file d’attente M/M/2 de
parametres A et g avec le comportement d'une file M/M/1 de parametres A et
2u. Les deux files ont la méme condition de stationnarité : A < 2p. La longueur
moyenne de la file M/M/1 est A/ (2 — A). Calculons la quantité analogue pour la
file M/M/2. Pour cette file la probabilité stationnaire vaut :

1 2-a al
PR =5
l+a+5~ 2+a 2]

Ty = Ty pour j=1.
Alors on trouve :

B NV S A
4—a? @u-NEu+A)~ 2u-A

E(N) =

La file d’attente avec un serveur est plus petite en moyenne que la file d’attente
avec deux serveurs. C’est normal intuitivement car la capacité de service maxi-
male du systeme a deux serveurs est moins utilisée que celle a un serveur.

Il est possible de trouver une formule simple pour la loi du temps d’attente d'un
client en régime stationnaire. Le temps d’attente est le temps passé par un client
entre son arrivée et son début de service. Appelons W ce temps d’attente. On a
déja calculé P(W > 0), c’est la probabilité pour que tous les serveurs soient occu-
pés. Calculons P(W > ). Si un client arrive et trouve s personnes en train d’étre
servies et aucune en attente, il attendra un temps aléatoire exponentiel de para-
metre ps avant de commencer a étre servi (cf. prop. 2.2.2 et 2.2.3). Si un client
arrive et trouve s + j personnes dans le systeme, il attendra avant de commencer
a étre servi un temps égal a la somme de j + 1 variables aléatoires indépendantes
exponentielles de parametre ps. En notant N le nombre de clients en attente a
I'arrivée du client test, on a:

PW>1)=) PN=j+)PW>r|N=j+s)

j=0
OO(S )]+1x B
= ZT[s+jf s - HSX qx
j=0 ¢ J:
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3.2. Files M/M/.

aj+s e’} (S )j+lxj B A
=Y 7 f H e M¥dx avec a=-
t

0 -
slsJ J! K

00 J
K f e Hsx Z @ dx (Fubini, fonction positive)
t j=0 J:

N o0

s

H f e W= gy
s! t

= T[O
o0

=P(W > O)f (s —a)e HE~@Dxqx,
t

On a établi le résultat suivant :

PropPoSITION 3.2.6 Conditionnellement en (W > 0), le temps d’attente W d’'un
client en régime stationnaire suit la loi v exponentielle de paramétre (s — A). La
loi de la variable aléatoire W vaut donc :

A1-PW=>0)8+PW>0)v.

Le temps d’attente moyen avant de commencer a étre servi vaut :

a’mg

B =P >0 ) = G- D= a2

Le temps moyen de réponse vaut alors : E(W) + 1/p. On peut calculer en exercice
la loi du temps de réponse. On trouve une densité égale a :

P(W >0)
l-s+a

P(W>0)
l-s+a

—p(s—a)x

pe ¥ (1 )+p(s—a)e

SiR est le temps de réponse pour un client, on constate que pour une file M/M/s
on a la formule :

E(N) =AE(R)

Cette formule, également vraie pour une file M/M/oo est tres générale. Elle porte
le nom de formule de LitTLE'. Ce qu’on appelle en général formule de LITTLE est
plutot I'égalité

E(L) =AEW)

ou L désigne le nombre de clients en attente et W le temps d’attente d'un client.
L'équivalence des deux formules résulte des égalitts R=W+ocetN=L+S ou S

1. Ce n'est pas E(R) = E(0) E(N) mais E(R) = E(t) E(N)!
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désigne le nombre de serveurs occupés. E(S) est le facteur d’utilisation et on a vu
que E(S) = p = AE(0), ce qui établit 'équivalence au moins pour les files M/M/.

Voici une justification heuristique de la formule de LITTLE : on considére une pé-
riode test commencant a I'arrivée d'un client et se terminant au début de service
du méme client. On suppose que l'ordre de service est FIFO. A est le nombre
moyen de clients arrivant par unité de temps, donc A E(W) est le nombre moyen
de clients arrivant dans la file pendant la période test, de durée moyenne E(W).
Si le systeme est en équilibre, le nombre moyen de clients sortant de la file d’at-
tente doit étre égal au nombre de clients entrant pendant la méme période. Or
les clients sortant de la file d’attente pendant la période test sont ceux qui étaient
présents a l’arrivée du client test, leur nombre est donc L et a pour moyenne E(L).
D’ou11’égalité annoncée.

On va maintenant s’intéresser au flot de sortie d'une file d’attente M/M/s.

THEOREME 3.2.7 (Burke) Dans une file d’attente M/M/s (s fini ou non) en régime
stationnaire, le flot de sortie est un processus poissonnien de méme parameétre
que le flot d’entrée.

Démonstration. Soit (X;);>o le processus de naissance et mort représentant le
nombre de clients dans le systeme. On suppose que ce processus est stationnaire,
c’est-a-dire que la loi de X; pour tout ¢ vaut &, unique probabilité réversible qui
existe dans les conditions d’étude de la file d’attente.

Fixons un temps T trés grand et définissons un processus sur [0, T] par: ¢ — Xt_;.
Changeons les valeurs de ce processus aux points de saut de maniere a ce que
chaque trajectoire soit continue a droite. Appelons (Y;)o<;<T le processus obtenu.
Ce processus est un processus markovien de saut homogene. En effet si on note
P;(.,.) les probabilités de transition de (X;);>¢, pour toute suite strictement crois-
santed'instants 0 =ty <1 <fr < - <l <tp41 <T:

P(Yy,, = g1 1Yy = ag,..., Yo = ao)
3 P(Yy,, = Qks1, Yy = Gk, ..., Yo = dp)
B P(Y,, = ay,...,Yo = ap)
_ PXr=ao,...Xr—y = ag, X141, = Akc+1)

- PXr=ap,...,X7-1,_, = k-1, XT—1, = Ak
_ P(XT = aO)---’XT—[k =ag |XT—[k+1 = ak+1) P(XT—[k+1 = ak+1)
PXr=ao,.... X171, = A1 | X1—1, = a) PXr—s, = ar)

soit en utilisant la propriété de Markov de (X;) et en simplifiant

P(Ytk+1 = ak+1)
P(Y;, = ay)

= P[k+1—tk (ak+l) ak)
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3.3. Files M/G/1

Comme le processus (X;) ;= est stationnaire, les probabilités de transition du pro-
cessus (Y;)o<s<T valent (poser ay =1, ax+1 =j) :

i hepin™
Ql’ l)])_ l’(])l) T[l'.

Si A est le générateur de (X;) =0, le générateur de (Y;)o<;<T aux points i et j vaut
.. Y ..

B(i,j) =A(,1) —=AG,])
T
puisque la probabilité m est réversible. Le processus Y a méme générateur que X,
il a donc méme loi. Le processus des instants de sauts +1 de Y a méme loi que
le processus des temps de saut +1 de X, soit la loi d'un processus de Poisson de
parametre A. Or les sauts +1 de Y correspondent sur [0, T] aux sauts —1 de X, soit
aux temps de sortie des clients du systeme. Ceci démontre bien que ces temps de
sortie suivent un processus de Poisson de parametre A. O

3.3 Files M/G/1

Dans ce paragraphe, nous allons étudier une file d’attente a un serveur telle que
le flot d’arrivée des clients est un processus de Poisson de parametre A et telle que
les temps de service des différents clients sont des variables aléatoires indépen-
dantes de méme loi toutes indépendantes des arrivées. La discipline de service
est toujours premier arrivé, premier servi. Lorsque la loi de service n’est pas ex-
ponentielle, le nombre X; de personnes dans le systeme au temps ¢ n’est pas un
processus de Markov. En effet le temps de service restant a fournir pour le client
en cours de service dépend a priori du temps déja passé a étre servi. On ne peut
donc plus utiliser les techniques des processus markoviens de sauts. Le fait que
les arrivées soient un processus de Poisson va cependant nous permettre d’utili-
ser une technique markovienne. Nous allons mettre en évidence une chaine de
Markov incluse dans le processus, le nombre de personnes dans le systeme aux
instants de sortie de chaque client.

Soient (S;),=1 les instants de sorties des clients. Appelons Y, le nombre Xs, de
clients présents a 'instant S, ou encore juste apres® 'instant S,.

ProrosITION 3.3.1 Dans une file d’attente M/Gl/1, la suite (Y,;),>1 des nombres
de clients présents dans le systéme aux instants de fin de service est une chaine
de Markov a valeurs dans N.

2. Se souvenir que les trajectoires du processus X; sont continues a droite, donc Xs, = Xg:.
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Démonstration. Appelons K,, le nombre de clients arrivés pendant le service du
n-ieme client. On a la relation :

Yni1 =Yy —1y,50+tK,

en posant Yy égale a 0. La variable aléatoire K,, est indépendante de Y, vu les
propriétés du processus de Poisson des arrivées et 'indépendance des temps de
service par rapport a ce processus. Ceci démontre la propriété de Markov. O

La loi de K;,, lorsque le temps de service o du n-ieme client vaut ¢, est une loi de
Poisson de parametre At (loi conditionnelle sachant o = ¢). La loi de K;, s’obtient
en intégrant cette loi conditionnelle par rapportalaloide o :

* a0

k
(3.1) gr =P(K, =k) =f e V' ——dPs(1)
0 k!

avec Py loi de service. La chaine de Markov (Y;;),en @ comme matrice de transi-
tion :

o d1 42 dq3 dqa
do 91 42 g3 (a
0 g0 1 g2 43

PZOOCIOquz
0 0 0 g0 ¢

Comme tous les gy sont strictement positifs, il est clair que cette chaine est irré-
ductible sur N. Sauf au point 0, cette chaine est identique a une marche aléatoire :
en effet, siY,;, >0, Y,+1 =Y, + (K, — 1) etles K, sont indépendantes. Les proprié-
tés des marches aléatoires sur Z sont bien connues. Si la moyenne de la loi des
sauts (E(K, — 1) ici) est nulle, la marche est récurrente nulle. Si la moyenne est
strictement positive, la marche est transiente et tend vers +oco. Si la moyenne est
strictement négative, la marche est transiente et tend vers —oo. Il est clair que sila
moyenne de la marche est strictement positive, la chaine comme la marche tend
vers plus l'infini et est transiente. Si la moyenne est négative ou nulle, la chaine
partant de n'importe quel point de N atteint presque stirement le point 1 qui est
donc récurrent et la chaine est récurrente. Il reste a calculer la moyenne E(K,, —1).
En permutant la somme et I'intégrale (Tonelli), on obtient :

EK,) =) kqi=\E(0).
keN

On pose p = AE(0) (quotient des temps moyens de service et d’'interarrivée), la
moyenne du saut de la marche vaut p — 1.

On a donc le résultat suivant :
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3.3. Files M/G/1

PROPOSITION 3.3.2 La chaine de Markov (Y,),en est récurrente si p <1 et tran-
siente dans le cas contraire.

Si p < 1, il existe une mesure invariante, unique a une constante multiplicative
pres. L'équation d’invariance s’écrit :

(3.2)
Mo = Ti4go +  To4qo
T = Mo + g1 + Toqi
T = TM3qo + T + Mg + Toqg2
M = Mgy14o + Teqr + TMe-142 + - + Mg + Togk

On démontre le résultat suivant :

PROPOSITION 3.3.3 La chaine de Markov (Y,) ,en admet une probabilité invariante
si et seulementsip < 1.

Il est possible de calculer certaines caractéristiques de la probabilité invariante.
En régime stationnaire, Y — 1y>¢+K a méme loi que Y (avec des notations évi-
dentes), d’otu :

E(Y) =E(Y) -P(Y > 0) + E(K),

soit : P(Y = 0) = 1 — p. Comme la chaine est récurrente et irréductible, la proba-
bilité invariante charge tous les points, donc P(Y = 0) > 0 et donc nécessaire-
ment p < 1. On constate qu'’il ne peut pas exister de probabilité invariante sip = 1.

En élevant au carré et en prenant I’espérance on trouve (Y et K sont indépen-
dantes) :

E(Y?) = E(Y?) + P(Y > 0) + E(K?) — 2E(Y) + 2E(Y) E(K) — 2P(Y > 0) E(K).
Or E(K) et P(Y > 0) valent p. Quant a E(K?), on le déduit de :

oo k oo
EKEK-1)=[ } k(k - e A0 dP, (1) :f A2t dPg (1) = A*E(0?).
0 keN k! 0

D’ot1 E(K?) = E(K(K-1)) + E(K) = A>E(c?) +p et

)\ZE(O'Z).

EY)=p+
M=p 2(1-p)

Il est possible aussi de calculer la fonction génératrice g de la loi invariante 7 en
fonction de celle de la loi des K;, (notée k) : en multipliant la j-ieme équation
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du systeme (3.2) par s/*! et en sommant en diagonale (a faire en exercice), on

obtient
3 h(s)(s—1)

S
8 s—h(s)
En faisant tendre s vers 1, on obtient iy =1—p (g(1) =h(1) =1 et K’ (1) = E(K)).
Il reste a remarquer que h s’exprime facilement en fonction de la transformée de
Laplace Z; de la loi des services (utiliser (3.1) et permuter somme et intégrale) :

1.

o0 o0
hs)=Y skqr :f e M9 GP (1) = Ly (A —As).
k=0 0

Finalement, lorsque p < 1, la fonction génératrice de la loi invariante s’écrit :
(s—1)ZLsA—=As)
S—ZLs(A=As)

g(s)= (1-p).
Cherchons a identifier le temps de séjour moyen R (attente + service) d’'un client
en régime stationnaire. Les personnes présentes dans le systeme au départ d'un
client sont celles qui sont arrivées durant son temps de séjour, donc si ce temps
de séjour vaut ¢, le nombre de clients pendant ce temps suit une loi de Poisson
de parametre At et on peut écrire :

© A

P(Y:k):j; e TdPR(t)

d’ou en sommant sur k, E(Y) = AE(R). On retrouve la formule de LITTLE vue dans
le casM/M/s.

La théorie des processus de renouvellement permet de montrer que le compor-
tement du processus (X;);>o est le méme que celui de la chaine (Y,); 0. Dans le
cas stationnaire, le processus a la méme loi invariante que la chaine.

Nous avons étudié en détail le cas markovien M/M/. dans lequel nous avons pu
faire explicitement la plupart des calculs de lois. Dans le cas M/GI/1 nous avons
mis en évidence une chaine de Markov sous-jacente qui nous a permis, la aussi,
de faire des calculs explicites de lois. Le cas GI/M/1 se traite de la méme maniere.
On peut mettre en évidence une chaine de Markov, cette fois non pas aux instants
de départ du systeme, mais aux instants d’arrivées et faire des calculs sur cette
chaine.

Dans le cas général GI/GI/1, les techniques markoviennes ne fonctionnent plus.
Il faut faire appel aux techniques liées aux processus de renouvellement. On dé-
montre qu'il existe un régime stationnaire lorsque le produit du nombre moyen
d’arrivées par unité de temps par le temps moyen de service est strictement plus
petit que 1. On démontre que la formule de LITTLE est encore vraie. On montre
que, en régime stationnaire, le flot des sorties du systeme a la méme loi que le
flot des entrées.
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Réseaux de files d’attente

Nous passons maintenant a I'étude des réseaux de files d’attente. Cette étude va
évidemment étre plus compliquée que celle d'une seule file d’attente. Pour pou-
voir utiliser les processus markoviens de sauts, nous ne considérerons que des
réseaux alimentés par des flux extérieurs poissonniens et dont les lois de service
sont exponentielles. Dans ce cas nous pourrons expliciter les probabilités inva-
riantes.

4.1 Exemples simples

4.11 Un systeme série-parallele

Considérons un réseau de trois files d’attente. Les files 1 et 2 sont du type M/M/1.
Les parametres de service de ces files sont 31 et f,. Les entrées dans ces files se
font selon des processus de Poisson indépendants de parametres o; et az. Les
flots de sortie des files 1 et 2 se réunissent et constituent les entrées de la file 3. La
file 3 est du type M/M/oo. Le parametre de service de la file 3 est y. La sortie de
cette file se fait vers I'extérieur.

P (o) ——= M/M/1
B1

M/M/oo -
BZ Y

P(op) — M/M/1
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Notons N (¢), N2(t) et N3(¢) les nombres de clients présents (en service et en at-
tente) dans chacune des unités. Les processus N (f) et N2 (¢) sont des processus
markoviens indépendants. Si a;/f; et a2/P2 sont tous deux strictement plus pe-
tits que 1, un régime stationnaire s’établit dans les files 1 et 2. Il sort de ces files
deux processus de Poisson de parametres a; et ay (théoreme de BUrke), le flot
d’entrée dans la file 3 est donc un processus de Poisson de parametre o; + ay (cf.
théoreme 2.2.10). Le processus N3() est également markovien et admet toujours
un régime stationnaire. Il sort de cette file un flot poissonien de parametre a; +as.
A priori le processus N3(f) n'est pas indépendant de N (¢) et N2 (#). Nous allons
voir que c’est le cas en régime stationnaire.

Notons 7y, 12 et 113 les probabilités invariantes de N, N, et N3. Nous avons :

o (n) = (1_%) (%) m2(n) = (1_%) (%)

1 (O(1+O(2)n ( O(1+O(2)
exp |- :

niz(n) = oy
n!

Si on note N(#) le processus de sauts a valeurs dans N3 de composantes N (7),
Ny (¢), N3(¢), ce processus est markovien et son générateur est donné par :

A((ny1,n9,n3),(n1 +1,n2,n3)) = o

A((nl)n2)n3))(nl _1)n2)n3+1)) = ﬁl 1}’11>0

A((ny,np,n3), (ny,ny +1,n3)) =

A((ny,nz,n3),(n1,n2—1,n3+1)) = P2 1,50
A((ny,n9,n3),(n1,n2,n3—1)) = yYns

A((ny,ny,n3), (n1,n2,n3)) = —(ap+P11y50+02+P2 1,50 +YN3).

Les autres termes du générateur sont nuls.

On constate que le processus N(z) est irréductible. Il n'admet pas de mesure ré-
versible (pourquoi?). Les équations d’invariance s’écrivent A = 0, soit pour tout
triplet (n,,n2,n3) de N3 :

n(ny,nz,n3) (&1 +P1 1,50 +a2 +P2 1,50 +YN3)
=7(ny —1,n2,n3)x1 1,50 +1(ny + 1, 12,13 — 1)P1 1py50 +1(01, 2 — 1, 13) 02 1,50
+7(ny,np+1,n3 —1)P2 1,50 +1(n1, 12,13 + 1) y(n3 + 1).

On vérifie que la probabilité
n(n, n2,n3) = M (n)mz(n2)mz(nsz)

est invariante.
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4.1.2 Un systéeme avec boucle

Considérons un réseau (voir schéma page suivante) formé de deuxfiles 1 (de type
M/M/o0) et 2 (de type M/M/1). Les deux unités fournissent des services indépen-
dants dont les durées suivent des lois exponentielles de parametres f3; et 3,.

Les clients se présentent a I'entrée suivant un flot de Poisson de parametre o
et entrent dans le file 1. A la sortie de la file 1, chaque client a la probabilité p
de quitter le réseau et la probabilité 1 — p de se diriger vers 'unité 2. Les choix
de directions sont indépendants entre eux et indépendants des services et des
arrivées. A la sortie de I'unité 2, le client rentre dans la file 1.

B1 )
Z(a) M/M/oo M/M/1 -

=sortie

Notons N (¢) et N2 () le nombre de clients présents au temps ¢ dans les unités 1
et 2. Le processus N(f) = (N;(£),N2(¢)) est un processus markovien de sauts a
valeurs dans N. Son générateur est donné par :

A((ny,n2),(ny +1,ny)) = o
A((ny1,ny), (n; —1,n)) = pnifs
A((ny,n),(n1—1,n2+1)) = (Q-p)niP

A((ny,n2),(n1+1,n2-1)) = P2 1,50
A((n1,ny), (n1,ny)) = —(a +n1P1 +P21y,50).

Les autres termes du générateur sont nuls.

Ce processus est irréductible. Pour trouver une probabilité invariante, supposons
que I'on soit dans un état stationnaire et évaluons les flots d’entrée moyens A,
et A, dans chaque unité de service. Nous obtenons :

A =a+A
Ao =(1-p)A;.

y s _a :(x(l—p)
Dou)\l—pet)\g —

Ces flots ne sont pas poissonniens et les processus N;(t) et N2(f) ne sont pas
markoviens. Cependant faisons comme si ils I'étaient, supposons A, < 32 pour
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qu'’ils admettent un régime stationnaire et posons :

1M1 (1) L ()\1) exp (—%) (file M/M/o0)

n! \pr )
my(n) = (1—&)(2) (file M/M/1)
B2 )\ P2
n(ny,np) = m(ny)ma(ny).

Les équations d’invariance s'écrivent pour tous (711, 7,) de N? :

n(ny, ny) (o +n1P1 +P2 1y,50)
=n(n; —1,n2)aly,, so+n(ny +1,n2)p1(n1 +p
+n(n+1,n-1)P1(n + DA =p) 1,0+ — 1,02+ 1)P21,,50.

On vérifie que la mesure nt(n1, ny) = 1y (n1)M2 (1) est invariante.

Donc si Ay < P2, c’est-a-dire si a < fop/(1 — p), il existe un régime stationnaire
décrit par la probabilité .

4.1.3 Un systeme fermé

Considérons un réseau fermé constitué de deux unités 1 et 2 comportant cha-
cune une infinité de serveurs. Les temps de service dans les deux unités sont
indépendants et suivent des loi exponentielles de parametres f; et 2. lya N
clients dans le réseau. Les clients qui sortent de la station 1 entrent dans la sta-
tion 2 et vice versa.

M/M/oo
B1

B
M/M/oo -

Notons N (¢) et N2(t) le nombre de clients présents au temps ¢ dans les unités 1
et 2. On a N () + N2(#) = N. Les processus N; et N, ne sont évidemment pas
indépendants. Chaque processus de saut N;(¢) (i = 1 ou 2) est markovien. Etant
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irréductible sur un espace fini, il admet une unique probabilité invariante. Le
générateur de N; est donné par :

A(n,n+1)=p2(N—-n),
A(n,n—-1) =P n.

On obtient comme probabilité invariante une loi binomiale 28N, 2/ (B + P2),
soit sur I’espace des couples (11, n2) de nombres entiers positifs de somme égale

aN:
1 B2 Y"1 ( P1
1) = NI— —
) n! (f’1+52 B1+P2

ng!
On constate que la probabilité invariante est la aussi de forme produit.

nz

4.2 Réseauxde Jackson

Les exemples 1 et 2 du paragraphe précédent de réseaux ouverts ont donné des
résultats semblables. Lorsqu’il y a un régime stationnaire, ce régime est décrit
par une probabilité produit. Nous allons étudier dans ce paragraphe une classe
de réseaux qui ont la méme propriété.

Nous considérons K stations. Chaque station a un seul serveur et le temps de
service a la station i est une variable aléatoire exponentielle de parametre ;.
Chaque station i est alimentée par un flot poissonnien exogene de parametre «;
et par des flots qui viennent des autres stations du réseau et éventuellement aussi
de i. Tous les flots exogenes et les temps de service sont indépendants. A la sortie
de chaque station, un client soit sort du réseau, soit retourne dans une station
du réseau. Ce choix se fait au hasard, indépendamment de toutes les autres va-
riables aléatoires qui interviennent; a la sortie de la station i, il y a une probabi-
lité r;; (1 = j <K) d’aller a la station j et une probabilité r; de sortir du réseau
(ri + Zﬁ.(:l rij = 1). Un tel réseau est appel€é réseau de Jackson.

On note X(t) = X1 (?),...,Xk(#)) 'état du réseau a I'instant ¢. X; (¢) représente le
nombre de clients présents dans la station i au temps t. Le processus (X()) ;>0
est un processus markovien de sauts a valeurs dans NX.

On note n = (ny,...,nx) ete; = (0,...,0,1,0...,0) le i-eme vecteur de base de R¥.
Le générateur de ce processus est donné par :

An,n+e;) = Qj
A(n,n—e;) Mi T lni>0;
A(n,n—e; +ej) MiTij 1n;>0-
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Les termes diagonaux s’obtiennent en remarquant que la somme des termes
d'une méme ligne est nulle :

~

A(n,n) == (o + i Lp;>0)-
i=1

On constate que le processus X(t) est irréductible sur N¥ si :
— il estouvert, c’est-a-dire alimenté extérieurement : il existe j tel que oj > 0;
— il estsans capture, c’est-a-dire si a partir de toute station il existe une possi-
bilité de sortir définitivement duréseau : Vi 3(iy, ia,..., ik, J) T'iiy Tiyip - - Tip jTj >
0.
L'équation d’invariance wA = 0 s’écrit :
K K
) Y (o + i 1n>0) = Y ((n+ e piri + m(n— e 1,,50)
=1

i=1 i
K K

+Z Zn(n+e,~—ej)pir,-j.
i=1j=1

Pour deviner une solution 7 a ce systeme, nous allons étudier les flots de clients
a travers le réseau. Supposons que le réseau fonctionne en régime stationnaire.
Appelons A; le nombre moyen de clients qui entrent dans la station i par unité
de temps. Comme on est en équilibre, c’est aussi le nombre moyen de clients qui
sortent de la station i par unité de temps. On a alors 'équation suivante, dite
équation du trafic :

K
Vi(1<i<K), A=+ Ajrji.
=1

Ceci constitue un systeme de K équations a K inconnues. On peut démontrer
que sous les hypotheses d'un réseau sans capture, ce systeme admet une unique
solution strictement positive. Posons alors p; = % et supposons que tous les
nombres p; sont strictement plus petits que 1. Par analogie avec les exemples
vus dans le paragraphe précédent posons : 1;(n;) = (1 —p;)(p;)™ (probabilité in-
variante d’'une file M/M/1) et t(n) = Hle 1;(n;). Nous allons démonter que 7 est
bien une probabilité invariante pour X(¢).

Pour cela on peut faire une vérification en remplacant dans ’équation d’inva-
riance |'expression de 7. Il est plus adroit d’utiliser la notion de réversibilité avec
la proposition suivante.

PROPOSITION 4.2.1 Soit (X;);>0 un processus markovien de sauts a valeurs dans E
de générateur A(.,.). Soient n une distribution de probabilité sur E strictement
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positive et B(.,.) la matrice définie par :
V(i,j)e E?, n(i)A, ) =n(j)B(j, ).
Si pour touti dansE on a I'égalité :

Y B, j) =Y AG,)),

JEE JjeE

J#i J#i
alors 1 est une probabilité invariante pour (X;);>o et pour tout T, B(.,.) est le gé-
nérateur du processus retourné (Xt—s)o<;<t-

Démonstration. Léquation }_;; B(i,j) = —A(i,i) n'est rien d’autre que 'équa-
tion d’'invariance. Donc 7t est bien une probabilité invariante. Le reste de la propo-
sition a été vu dans la démonstration du théoreme de BURKE (proposition 3.2.7).

0

Dans le cas des réseaux de Jackson, calculons la matrice B(.,.) :

n(n)B(n,n +e;) =n(n+e;))A(n+e;,n) =n(n+e;)W;r;,
n(n)B(n,n —e;) =n(n—-ej)An—e;n) =n(n—e;)u; 1,50,
nn)Bn,n—e;+ej)=n(n—e;+ej)A(n—e;+ej,n)=n(n—e;+e;)Y;rji ln,;>o.

Par définitionde 7t :

K K
) =[[mim) =] -p) )™

i=1 i=1
» s m(nte) _ A mn—e) _ 1 Tn-eite))  pj .
d’ou n(n)l =Pi= u;’ n(n)l ~pi’ n(n) Y et:
B(n,n+e;) = A\;r;,
o
B(n,n—e;)=— 150,
l
J
B(n,n—e;j+ej)=rji— lp;>0-
Pi
On en déduit :
K Q; 1 K
/
Y Bm,n)=) (Airi+ —1y50+— 150 ) AjTji)
n'eE i=1 Pi Pi j=1
n'#n
K o Hi S
=) (Airi + v 1,50 o 1,,50(A\; —a;)) (équation du trafic)
i=1 i i
K

Y (Airi + Wi Ly 0)-

~
—
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D’autre part on a vu que :

K
2 Aln,n)==An,n) =} (o + Wi 1n;>0)
e

En sommant sur i les équations du trafic on trouve que : Zle o = Zle A;r;. On

constate que I'on a bien1'égalité : ¥, ., A(n,n') =¥ 4, B(n,n').

Ceci démontre que 7 est une probabilité invariante pour le processus X(¢). On
en déduit également que le processus retourné a comme générateur B(.,.). En
régime stationnaire, ce processus est un processus de Markov associé a un réseau
de Jackson de parametres (o;)’, (1;)’, (r;)" et (r;;)' tels que :

(06 )\ j
@) =Niri @)'r)' == W) i) =rij—
Pi Pi
Les instants de sorties définitives du réseau initial sont les instants d’entrée du ré-
seau correspondant au processus retourné. Ce sont donc des flots poissonniens
indépendants entre eux de parametres A;r;.

Nous avons démontré le théoreme suivant :

THEOREME 4.2.2 (Jackson) Dans un réseau de Jackson ouvert et sans capture, le
processus markovien de sauts X(t) correspondant aux nombres de clients pré-
sents dans chaque station du réseau a l'instant ¢ est irréductible et admet une
probabilité invariante it de forme produit : t(n) = []; m; (n;). Les probabilités mar-
ginales m; (.) sont les probabilités invariantes correspondant a la station numéro i
fonctionnant seule avec un flot extérieur poissonnien de parametre A;. Ces para-
metres A\; sont calculés a I’aide des équations de trafic.

Les flots de sortie du réseau sont des flots poissonniens indépendants.

Les flots d’entrée et de sortie du réseau sont poissonniens. En revanche les flots
qui traversent les stations du réseau n’ont aucune raison d’étre poissonniens.

Pour s’en convaincre étudions le réseau a une station suivant : la station a un
flot d’entrée extérieur poissonnien de parametre a, un temps de service expo-
nentiel de parametre p et un serveur; a la sortie de la station chaque client sort
du réseau avec probabilité p et retourne dans la file d’attente de la station avec
probabilité g (p +q =1).

Le flot moyen A a travers la station satisfait : A = a+ gA, dou A = a/p.llyaun
régime stationnaire si A < [, c’est-a-dire si a < pu. Ce régime stationnaire est
décrit par la probabilité invariante : m(n) = (1 —p)p” avecp=A/p=a/(pp).

48



4.2. Réseaux de Jackson

v
=1-
P () MM/l =P,
p
—gortie

On se place al'instant d’arrivée d'un client dans la station. Notons X le nombre de
clients présents dans la station juste avant cette arrivée, T, le temps nécessaire
pour que le prochain client venant de I'extérieur arrive, T, le temps nécessaire
pour qu'un client présent dans la station y revienne et T le temps qui s’écoulera
jusqu’a l'arrivée du client suivant (extérieur ou recyclé).

P(T>x)=P(T,>xNT, >x)

o0
=) P(T,>xnT,>x|X=n)PX=n)

n=0

Z P(T,>x)mn)P(T, >x|X=n)

i 4’“(1—%)(%) P(T, > x|X = n).

Calculons la probabilité P(T, > x | X = n). T, est 'instant de sortie du premier
client recyclé, ou +oo siles n + 1 clients présents quittent tous le réseau a la fin de
leur service; décomposons donc I'événement T, > x selon le numéro du premier
client recyclé :
n+l
P(T,>x|X:n)—Z(pf 1qP(ZO,>x)) +1
j=

n+1 tj—l
— Z p] 1 f —Hf%dt)+p”“ (cf. prop. 2.2.4).

On reporte ce résultat dans I'expression de P(T > x) :

et
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soit en appliquant Fubini pour permuter les trois sommations (fonction positive)

_ o w  unk
e ax(l_%)(lljﬁ‘i'qp e ut};)pk%ngk(%)"dl‘)
- k

:e_ax(l_%)(lljﬁmu xme‘”f,gpk%(%)k —lﬁdt)
:e_ocx(l_%)(lpa""“1 _WOXO"((XICL')]CI 10((1)

-~ x k=0 % T pu
:e_ax(l_%)(lpa +4qu e et = dt)

- x T pu

(a—p)x
i) (S
:pp—(xe_ax+ qu e kX
M- H=o

On constate que T ne suit pas une loi exponentielle et donc le flot n’est pas pois-
sonnien. On vérifie bien que : E(T) = 1/A.

On peut étudier de la méme maniere des réseaux de Jackson plus généraux avec
des stations a plusieurs serveurs. On peut également étudier des réseaux fermés.
On peut aussi avoir le cas de plusieurs types de clients qui évoluent dans des
réseaux de Jackson. Tout ceci se traite par les mémes méthodes et on trouve des
probabilités produits pour décrire les régimes stationnaires.
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Chapitre 5

Fiabilité de systemes simples

La fiabilité d'un dispositif est une caractéristique de ce dispositif exprimée par
la probabilité qu’il accomplisse une fonction requise sans défaillance, dans des
conditions données, pendant une durée donnée.

Les études de fiabilité se sont beaucoup développées ces vingt dernieres années.
Les problemes de sécurité (industries aéronautique et spatiale, électro-nucléaire)
ont été un moteur de ce développement. Cependant ces techniques se répandent
dans toute I'industrie car elles permettent de modéliser dans quelles conditions
un dispositif fonctionne correctement ou se trouve en panne. Elles permettent
ainsi d’améliorer les caractéristiques du dispositif, de donner une base ration-
nelle aux contrats liant les différents acteurs intervenant sur le dispositif. Elles
donnent des outils pour une gestion des opérations de maintenance.

Dans ce chapitre nous allons donner des bases des calculs de fiabilité sur des
systemes simples ol des calculs analytiques explicites sont possibles. Cela nous
permettra de nous familiariser avec ces notions avant d’aborder I'étude de sys-
temes complexes dans le prochain chapitre. L'outil mathématique essentiel qui
est utilisé est le calcul des probabilités et la statistique. Pour I’étude du temps
de fonctionnement d’'un systeme simple on utilise des techniques probabilistes
et statistiques élémentaires. Quand on s’intéresse a un systeme composé d’élé-
ments réparables et qu’alternent des périodes de fonctionnement et des périodes
de réparation, on fait intervenir les processus de Markov et les processus de re-
nouvellement.

5.1 Définitions générales

Quand on étudie un systeme, on définit en fonction du temps deux grandeurs :
la fiabilité et la disponibilité.
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DEFINITION 5.1.1 On appelle fiabilité R(t) d’'un systéme S devant accomplir une
mission dans des conditions données la probabilité que le systéme S n’ait eu au-
cune défaillance entre les instants 0 et t. On appelle disponibilité A(t) la proba-
bilité que le systeme S fonctionne a I'instant t. On a donc :

R(t) = P(S non défaillant sur [0, t])
A(t) = P(S non défaillant a I'instant t).

La fiabilité est une fonction qui décroit de 1 a 0 lorsque le temps varie de 0 a I'in-
fini. Dans certaines conditions la disponibilité d'un systeme réparable en fonc-
tionnement permanent se stabilise lorsque ¢ grandit sur une valeur non nulle.
En revanche la fiabilité tend toujours vers 0. Lorsque le systeme est réparable on
définit également une autre notion : la maintenabilité.

DEFINITION 5.1.2 On appelle maintenabilité M(t) d'un systéme réparable S la pro-
babilité pour que le systéme S soit réparé avant l'instant t sachant qu’il est dé-
faillant a I'instant 0. On a donc:

M(¢) =1 —P(S non réparé sur [0, t]).

La maintenabilité est une fonction croissante de 0 a 1 lorsque ¢ varie de 0 a I'in-
fini.
On s’intéressera a diverses grandeurs moyennes dont les sigles sont les suivants :

— MTTF (mean time to failure) : durée moyenne de bon fonctionnement
d’'un systeme en état de marche a I'instant initial,

— MTTR (mean time to repair) : durée moyenne de réparation d'un systeme
en panne a l'instant initial,

— MUT (mean up time) : durée moyenne de bon fonctionnement d'un sys-
teme réparable en régime stationnaire,

— MDT (mean down time) : durée moyenne de défaillance d'un systeme ré-
parable en régime stationnaire,

— MTBF (mean time between failure) : intervalle de temps moyen séparant
deux défaillances consécutives d'un systeme réparable en régime station-
naire.

Ces sigles sont classiques, mais ne sont pas toujours utilisés avec exactement la
meéme signification. A priori MUT est différent de MTTF car lorsqu’'un systeme
est remis en état apres une défaillance tous ses composants n'ont pas été remis
a neuf. De méme MTTR est différent de MDT car MTTR concerne la premiere
réparation d’'un systeme alors que MDT représente le temps moyen de réparation
du systeme en régime stationnaire. On a évidemment la relation : MTBF = MUT +
MDT.
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Si T représente la variable aléatoire mesurant la durée de bon fonctionnement
du systeme, on peut écrire : R(z) =P(T > £)

La fiabilité R(¢) vaut donc 1 moins la fonction de répartition de T. Nous suppose-
rons dans la suite que T admet une densité f par rapport ala mesure de Lebesgue
sur R;, presque partout continue. Cette densité vaut presque partout :

dR
f@= —E(I)-

On sait que si T admet un premier moment alors :

MTTF = E(T) :f R(#)dt.
0

Si U est la variable aléatoire représentant la durée de réparation du systeme, on
a:M(@)=PWU =1).

M(¢) est la fonction de répartition de U. Nous supposerons que U admet une
densité g par rapport a la mesure de Lebesgue sur R,, presque partout continue.
Cette densité vaut presque partout :

(1) = dM(t)
8=
Si le temps moyen de réparation est fini, alors on a alors :

MTTR:f (1-M(1))dt.
0

On introduit également les taux instantanés de défaillance et de réparation A(t)
et u(r):

1
AM)=1lm — Pt<T=<t+At|T>1),
At—0 At

1
p() = lim — P(t<U<t+Ar|U>1).
At—0 At

En tout point de continuité des densités on a les relations :
dR
3 f@) B - ()
R(?) R(?)

SN (G (1)
HE=T" M0~ 1-M0)

A(1)

d'otr:
t t
R(t):exp(—f )\(u)du) et M(t):l—exp(—f () du).
0 0

La fiabilité (resp. la maintenabilité) s’exprime en fonction du taux instantané de
défaillance (resp. de réparation) et vice versa.
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5.2 Testde Laplace

Le cas le plus simple a étudier est celui ou les taux instantanés de défaillance et
de réparation sont constants. Le test de Laplace est souvent utilisé pour vérifier
ces hypotheéses. Il repose sur le résultat de la proposition 2.2.7 : négligeons la du-
rée des réparations et supposons le taux instantané de défaillance A(¢) constant,
le processus des instants de panne est alors un processus de Poisson de para-
metre A. Notons (T;) ses instants de saut et considérons la variable aléatoire

3
Un = — Tl'
niz
La loi conditionnelle de U,, sachant N; = n estla loi de
>3
Vl’l = Xi)
nizs

ol les X; sont indépendantes de loi uniforme sur [0, £] (proposition 2.2.7).

Pour n assez grand on approxime la loi de V,, par le théoreme central limite :
\%n(\)/") suit approximativement une loi normale réduite .4'(0,1). On a (loi uni-
forme)

Vi, EX;)= E, Var(X;) = t—z, dou E(V,) = E, Var(V,) = t—z

2 12 2 12n
Pratiquement, on observe les n premiers instants de panne (on a alors N(¢) = n),
la variable test sera

Un—EUn N, =n) _ % ?lei_% _ %Zylei_é

oU,|N;,=n) \/fz_n t

car EU, | Ny = n) = E(V,) et (U, | N; = n) = (V). Si 'hypothése A(f) = A
(constante) est vérifiée, W,, doit suivre (approximativement pour n assez grand)
une loi normale réduite.

12n,

n:

Si au contraire A(f) est décroissante (fiabilité croissante) les instants de panne
seront plus concentrés autour de 0 (se souvenir que E(T;;; —T;) = A~!, donc A
représente le nombre moyen de pannes par unité de temps).

On prendra donc comme région de rejet {W,, < —c} pour tester
Ho = {A(t) = A} contre {A(¢) décroissante}
et {W,, > c} pour tester
Ho={A(t) =A} contre {A(¢) croissante}

ol ¢ est lu dans la table de Gauss, par exemple :
— ¢ =1.96 au seuil de confiance o = 0.975,

— ¢ =1.645 au seuil de confiance a = 0.95.
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5.3 Exemples de lois utiles en fiabilité

5.3.1 Loiexponentielle
On rencontre souvent en fiabilité la loi exponentielle. Si le parametre esta on a :

1
fO=ae 1,2, RO=e%1;, Al)=a, MTITF=-.
(04

5.3.2 Loil(a,p)
On rencontre également la loi I'(a, ) dont la densité est
a
)= ——(@)PTe ™ 1,59 avec a>0,p>0.
f0=56 20 p

On aalors:

MTTF = E

«
Quand p = 1 on retrouve la densité exponentielle. Lorsque  # 1 il n’y a pas de
formule explicite pour la fiabilité et le taux de défaillance.

Lallure des densités de probabilité, selon les valeurs de f3, est la suivante :

2

0.6

5.3.3 Loide Weibull

La loi de Weibull, qui admet trois parametres, est souvent utilisée. X suit une loi
. X . C(X=y\P . .

de Weibull de parametres 1, f, v, si et seulement si ()%) suit une loi exponen-

tielle de parametre 1. Sa densité vaut :

—v\P-1 -y\P

t _

f(l‘)=E(—Y) e (“Y) 1;>y avecPp>0,n>0ety=0.
ntn
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t—y\P p-1
Vt=y, R(t):e_(TY) et )\(t):%(tT) )

On trouve :

1
MTTF=y+nT(1+ B).
Le choix des parametres donne une grande variété de comportements, c’est ce
qui fait I'intérét de cette loi. Voici I'allure des densités de probabilité, selon les
valeurs de §, pourn=1ety=0:

5.3.4 Loilognormale

On dit que X suit une loi lognormale de parametres m et ¢ si et seulement si InX
suit une loi normale .4 (m, 0), la loi lognormale a donc pour densité

1
tov2n

Int-m

2
e_%( ? ] 1;50.

f)=
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Le taux de défaillance vaut 0 en 0, croit et passe par un maximum puis décroit en
tendant vers 0 al'infini. On a:

G2
MTTF = exp(m + ?).

Voici I'allure des densités de probabilité, pour m =0oul et o =0.5,1ou 2.

On utilise diverses lois pour modéliser la durée de bon fonctionnement ou de ré-
paration d’un systeme. Le choix de la loi se fait, d'une part en cherchant a décrire
le plus exactement possible le durée étudiée, d’autre part en tenant compte de la
facilité de traitement qu’offrent les diverses lois. Ces deux contraintes sont sou-
vent contradictoires et il faut faire une pondération raisonnable entre les deux.
Quand on a décidé du type de loi utilisée, on estime les parametres de la loi a
I'aide des techniques classiques de statistique paramétrique, la plupart du temps
al’aide d’estimateurs du maximum de vraisemblance sur un échantillon de cette
loi. On dispose souvent de données censurées, d’ou 'utilisation d’estimateurs
adaptés a ce type de données. Dans ce cours on suppose que cette démarche
statistique a été effectuée et on s’'intéresse au traitement probabiliste du modele
étudié.
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5.4 Systemes a un élément

Ce qui vient d’étre dit en général s’applique évidemment a un systeme compor-
tant un seul élément. Les études statistiques ont montré que la courbe représen-
tant le taux de défaillance A(¢) a souvent la forme d'une « courbe en baignoire ».
Cette courbe comprend trois régions. La premiere région correspond a la période
de jeunesse de 'élément au cours de laquelle le taux de défaillance décroit. La
deuxieme région correspond a la période de vie utile de I’élément au cours de la-
quelle le taux de défaillance est sensiblement constant. La derniere région corres-
pond a la période de vieillissement pendant laquelle le taux de défaillance croit
rapidement.

Pendant la période de vie utile le taux de défaillance est constant. Si on ne s’inté-
resse qu’a cette période, on peut supposer que le taux de défaillance est toujours
constant et donc que le temps de défaillance suit une loi exponentielle. Si on sup-
pose que le temps de réparation suit lui aussi une loi exponentielle, A désignant
le taux de défaillance et p le taux de réparation, on a:

1 1
MTTF =MUT = X MTTR=MDT = —-
v
Le processus (X;) ;>0 qui vaut 1 quand I'’élément est en état de marche et 0 quand
il est en panne au temps ¢ est un processus markovien de saut. Ce processus a été
étudié au chapitre 2 : il est ergodique et admet comme probabilité invariante :

mO = may=_t_
A+ T A+p

Donc lim;—. o0 A(#) = m(1) = 35

On a également calculé les probabilités de transition de ce processus en résol-
vant I’équation de Kolmogorov (cf. 2.4.3, p. 25). Cela donne la disponibilité si A(0)
vaut1:

A
(51) A =P,(1,1) = —H— 4 ==+t
A+p A+
Sil’hypothese « taux de défaillance constant » est raisonnable pendant la période
de vie utile, 'hypothese « taux de réparation constant » n’est pas souvent vérifiée.
Elle est commode car elle permet d’utiliser les techniques markoviennes.

Considérons maintenant un processus (X;);>o associé a un systeme formé d’'un
élément réparable. Comme plus haut X; vaut 1 ou 0 suivant que 1’élément est
en état de marche ou non. Supposons que X vaut 1, que les temps de bon fonc-
tionnement sont des variables aléatoires indépendantes de méme loi exponen-
tielle de parametre A, que les temps de réparation sont des variables aléatoires

58



5.4. Systémes a un élément

de méme loi m et que les temps de fonctionnement et les temps de réparation
sont indépendants. Si la loi m n’est pas exponentielle, le processus (X;);>o n’est
pas markovien. C’est un processus de sauts. Nous allons montrer que la disponi-
bilité de ce processus admet des équations du type Kolmogorov :

A(t+h)=PX(t+h)=1)
=PX(t+h)=1|X()=1) PX(#®)=1)+PX((t+h)=1nX() =0),

soit en décomposant le second terme de la somme selon la durée u de réparation

t
=(1-Ah+oh)A(?) +f A(t —u)(Ah +o(h)) m(du).
0
On en déduit que A(t) est dérivable et que :

t
d—A(t) =—-AA(2) +)\f A(t —u)m(du).
dt 0

Pour résoudre cette équation différentielle on peut prendre la transformée de
Laplace des deux membres. Si on note A* (s) et m* (s) les transformées de Laplace
de A(t) et m

A*(s):f e STA(H)dt et m*(s):f e ' m(dp),
R;: R

+

on obtient (voir annexe 6.3.2) :
SA*(s) —A(0) = =AA*(s) + Am ™ (s)A* (s),

d’ol1: A*(s) = m, on a donc démontré la proposition suivante :

PROPOSITION 5.4.1 Si un systéme a un élément satisfait aux conditions suivantes :
— il fonctionne a I'instant 0,
— les durées de bon fonctionnement sont des variables aléatoires indépen-
dantes de méme loi exponentielle de paramétre A,
— les durées de réparation sont des variables aléatoires indépendantes de
méme loi de transformée de Laplace m™,
— les durées de bon fonctionnement et de réparation sont indépendantes,
alors la disponibilité admet pour transformée de Laplace :

1

Als)= s+7\—7\m*(s).
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En particulier si m est la loi exponentielle de parametre [, on trouve :

M l+ A 1
CA+US A+PHS+HA+U

A*(s)

et en inversant on retrouve le résultat de 'équation 5.1. Dans le cas général, il faut
calculer m*(s) et inverser la transformée de Laplace A* (s).

Exercice : Calculer la disponibilité en régime stationnaire en fonction du temps
moyen de réparation.

Si A(t) acomme limite A, quand ¢ tend vers 'infini, alors sA*(s) tend également
vers Ao lorsque s tend vers 0 : on remarque que ;- se” % dz =1 et on écrit

T (e’
SA*(5) — Ao = f se SUA(L) — Aso) dit + f se SHA() — As) dt,
0 T

on choisit T assez grand pour que la seconde intégrale soit petite et on fait tendre
s vers 0 dans la premiere. La réciproque est vraie si A(¢) n’est pas trop irrégulier
au voisinage de I'infini. On démontre que c’est le cas ici.

Si on note m; le temps moyen de réparation (m; = [;°xm(dx)), m*(s) a pour
développement limité en s =0 m*(s) =1—sm; + o(s?) et

lim A(f) = lir% SA*(s)

t—+o00o s
I u
=lim
s—05+A—=A(1l—smj +0(s2))
_ 1
B 1+Amy

Sila loi m du temps de réparation est exponentielle de parametre g on retrouve

lim A(f) = —F—

t—+o00 +H

5.5 Systemes simples

Nous allons nous intéresser a des systemes composés de plusieurs éléments. Ces
éléments peuvent étre en série, en parallele ou former un réseau plus complexe.
Dans ce paragraphe nous allons nous contenter d’étudier des systemes simples,
soit du fait de leur configuration, soit du fait du petit nombre d’éléments.
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5.5.1 Eléments en série

Considérons un systeme composé de n éléments en série : on suppose que la dé-
faillance de I'un quelconque des n éléments entraine la défaillance du systeme.
Supposons que les instants (T;);<;<,) de défaillance des éléments soient des va-
riables aléatoires indépendantes. Si T est le premier instant de défaillance du sys-
teme on a: T =inf,<;<, T;. La fiabilité du systeme vaut :

RO =PT>n=PNVi(l<i<n) T;>0)=[[PTi>0=][Ri@.
i=1 i=1

Si A; (1) est le taux de défaillance de I'élément i et A(¢) le taux de défaillance du
systeme, ona:

t tn
R(t) = exp (—fo )\(u)du) =exp (—fo )\i(u)du).
i=1

On en déduit que : A(u) = X7 | A; ().

Si les éléments du systeme sont réparables, on s’intéresse a la disponibilité. Si
on note A; () la disponibilité de I'élément i (1 <i < n) et A(¢) la disponibilité du
systeme, on a la relation : A(¢) = []?_; A; (). On a établi le résultat suivant :

PROPOSITION 5.5.1 Pour un systéme constitué de n éléments en série indépen-
dants et réparables, la fiabilité, le taux de défaillance et la disponibilité du sys-
teme global sont donnés par :

RO =][Ri@®), Aw=> N@w), Aw®)=]]Ai®.
i=1 i=1 i=1

5.5.2 Eléments en paralléle

Un systeme de n éléments est dit en parallele si la panne de tous les éléments
est nécessaire pour entrainer la panne du systeme. On suppose que les temps
de défaillance des éléments sont des variables aléatoires indépendantes et on
conserve les notations du paragraphe ci-dessus.

Si les éléments ne sont pas réparables, le premier instant de panne du systeme est
donné par: T = sup,.;-, T;. La fiabilité du systeme global vaut :

R=1-PT<n)=1-[]P(Ti<t)=1-[]A-R;@).
i=1 i=1

IIn’y a pas de formule simple donnant le taux de défaillance du systeme en fonc-
tion du taux de défaillance de chaque élément.
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Si les éléments du systeme sont réparables, on peut écrire avec les mémes nota-
tions que pour les éléments en série : A(¢) = 1 -}, (1 - A; (2)).

Lorsque les éléments du systéme sont réparables, le calcul de la fiabilité est beau-
coup plus compliqué car si un élément tombe en panne, il peut étre réparé avant
que les autres éléments tombent en panne et ainsi de suite. Il n'y a pas de formule
simple. Lorsque les taux de défaillance et de réparation sont constants on peut
utiliser les techniques markoviennes pour faire ce calcul.

Prenons par exemple deux éléments ayant chacun un taux de défaillance égal
a A et un taux de réparation égal a . Les temps de fonctionnement et de répara-
tion de ces deux éléments sont des variables aléatoires indépendantes. On a vu

(cf. 2.4.3, p. 25) que :

M A A+t
Ai(t)=Pi(1,1) = —— + —— e~ A+wr,
i (1) ¢(1,1) )\+H+7\+He

A(f)=1- (L (1 _ e—()\+p)t))2.
A+

Considérons le processus a (X;) a valeurs dans ’ensemble {0, 1,2} représentant le

nombre d’éléments en état de marche au temps ¢. Le systeme fonctionne si X;

vaut 1 ou 2, il est en panne lorsque X; vaut 0. (X;) ;>0 est un processus markovien

de sauts de matrice génératrice :

—2u 2 0
A= A —A+p
0 2\ —2A

Il serait facile de calculer les caractéristiques de (X;);> : probabilité de transition
(al’aide des équations de Kolmogorov) et probabilité invariante. On retrouverait
ainsi des valeurs que I'on peut obtenir plus simplement en considérant les deux
processus de Markov indépendants qui décrivent I’état de chaque élément.

Pour calculer la fiabilité, on va rendre I'état de panne du systeme, c’est a dire ici
I’état 0, absorbant. On considere le processus Y; égal a X; jusqu’a ce que X; at-
teigne 0, ensuite Y; reste absorbé en 0. Ce processus est un processus markovien
de sauts de matrice génératrice égale a :

0 0 0
A=l A -(A+ WM
0 2A —-2A

Si on note P, (i, j) les probabilités de transition ce nouveau processus et si au
temps 0 les deux éléments sont en état de marche, la fiabilité du systéeme initial
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est égale a la disponibilité du systeme modifié et vaut donc :
R(#) =P;(2,1) + P£(2,2).
Les probabilités de transitions se déduisent des équations P, = P,A :

P;(zy 1) = _(A+ ll) Pl’(z) ]-) + ZAPI'(Z)Z))
P;(2,2) = 3 P:(2,1) - 2AP.(2,2).

Ce systeme peut se résoudre en diagonalisant la matrice du systeme. On peut
aussi prendre les transformées de Laplace P; (s) et P; (s) des fonctions P;(2,1) et
P;(2,2). On trouve :

sPE(s) = —(A+p) PI(s) + 2API(s),
sP3(s)—-1 = U PI(s) — 2AP;(s),
d’ou
. 2\ . S+A+u
P, (s) = et P,(s)=

S2+ (3A + ) + 2A2 s2+ (3N + s + 272

Si s et s, sont les deux racines du trindme s + (3A + p)s +2A2?, s; et s, sont réelles,
négatives et distinctes :

—BA+ ) — VA2 +6Ap+ P . —BA+ ) + VA2 +6Ap+ p?
= e Sy = .

2 2

S1

En inversant les transformées de Laplace (décomposer la fraction en éléments
simples et utiliser le dictionnaires d’images de I'annexe) on trouve :

S2 S1
eslt _

S2—381 $2—381

Sat

R(?) = e (s; etsy <0).

On sait que : MTTF = [;°R(¢) dr = R*(0). Donc

A+

MTTF = P; (0) + P, (0) =
HO)+P30) = 5

La fiabilité, comme le MTTE dépend de I'état du systeme a 'instant 0. Ici on I'a
calculé avec I'état 2 a I'instant initial. Si I’état initial vaut 1, on trouve :

sPi(s)—1 = —(A+w Pi(s) + 2AP(s)
sP5(s) = U Pi(s) — 2AP;(s)
d’ ol
P (s) = 2A s et Pi(s)= a
1 OS24 (BA+ s +2A2 2 824 (3A+ s +2A2
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et
2 A+

MTTF = P; (0) + P, (0) =
HO+P; =5

Pour calculer le MUT, on va se placer en régime stationnaire pour X;. Le début
d'une période de fonctionnement du systeme correspond a une transition de
I'état 0 al’état 1. Le MUT est donc égal au MTTF avec état initial 1 :

D’autre part il est clair que : MTTR = MDT = ﬁ On aalors:

2)\+p+ 1 _()\+p)2
202 2p 2pA2

MTBF =MUT + MDT =
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Chapitre 6

Fiabilité de systemes complexes

L'étude de la fiabilité d'un systeme complexe passe par une analyse des condi-
tions dans lesquelles le systeme tombe en panne. Il existe plusieurs types de re-
présentation de cette analyse que nous exposerons dans le premier paragraphe
de ce chapitre. Puis nous étudierons les systemes markoviens. Enfin nous donne-
rons quelques pistes pour I'étude de systemes non markoviens.

6.1 Représentation de lalogique d’un systeme

6.1.1 Diagramme de fiabilité

Pour représenter la logique d’'un systeme, la représentation la plus naturelle est
le diagramme de fiabilité. Ce diagramme est souvent tres proche du schéma fonc-
tionnel du systeme. Dans cette représentation, les blocs représentant des élé-
ments (matériels ou événements) dont la défaillance entraine la défaillance du
systeme sont placés en série, ceux dont la défaillance ne provoque la défaillance
du systeme qu’en combinaison avec d’autres blocs sont disposés en parallele
avec ces derniers. Le diagramme de fiabilité est un graphe sans circuit admettant
une entrée et une sortie dont les sommets représentent les éléments du systeme
et dont les arcs représentent les relations entre les différents éléments.

Le systeme fonctionne s'il existe un chemin de succes entre l’entrée et la sortie du
diagramme de fiabilité. Lensemble des chemins de succes représente ’ensemble
des états de marche du systeme.

Dans le chapitre précédent nous avons calculé la disponibilité de certains sys-
temes simples représentés par des diagrammes de fiabilité en série et en paral-
lele dont les éléments sont indépendants. On peut essayer de calculer la dispo-
nibilité d'un systeme en remplacant successivement les éléments en série et en
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paralleles par des éléments uniques dont on calcule la disponibilité. Cette tech-
nique fonctionne bien pour des systemes simples mais devient vite pénible pour
de gros systemes. Lorsque les éléments sont tres fiables, leur disponibilité est
proche de 1. On peut alors faire des calculs approchés avec les indisponibilités
qui sont proches de 0.

Ainsi en notant A; (¢) 'indisponibilité de I'élément i au temps ¢, on peut écrire
I'indisponibilité A(z) du systeme constitué de n éléments en série :

An=1-[1[1-&®) = L A,
i=1 i=1
Si les éléments du systeme sont en paralléle, on a :
—_— n —_—
A@) =]Ai@.
i=1

Ces formules sont tres simples, mais il faut faire attention de rester dans un cadre
ou 'approximation est valide.

6.1.2 Arbre de défaillance

Une des représentations les plus utilisées de la logique d’un systeme est I'arbre
de défaillance (fault tree). Cette méthode naquit en 1962 dans les bureaux d’étude
de la compagnie BELL. Une utilisation extensive en a été faite dans les études sur
la stireté des réacteurs nucléaires (rapport Rasmussen ou Wash 1400).

On part d'un événement indésirable unique et bien défini. Dans notre cadre il
s’agit du non-fonctionnement du systeme. Dans le cas d’'une étude de streté
d’'un systeme, il s’agit d'un événement dont les conséquences sont graves. L'arbre
de défaillance représente graphiquement les combinaisons d’événements qui
conduisent a la réalisation de cet événement indésirable. Il sera formé de ni-
veaux successifs tels que chaque événement est généré par des événements de
niveau inférieur par 'intermédiaire de divers opérateurs (ou portes) logiques. Ce
processus déductif est poursuivi jusqu’a ce qu'on arrive a des événements indé-
pendants entre eux et probabilisables. Ces événements de base peuvent étre des
pannes, des erreurs humaines, des conditions extérieures.

Un certain nombre de conventions sont utilisées par les fiabilistes pour dessiner
un arbre de défaillance :
— un cercle représente une défaillance de base,
— un rectangle représente un événement intermédiaire,
— un losange représente une défaillance supposée de base qui pourrait étre
subdivisée en événements de base mais ne le sera pas faute d’'intérét ou de
renseignements,
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— un double losange représente un événement dont les causes ne sont pas
développées mais le seront ultérieurement,
— un opérateur (ou porte) logique ET est représenté par le symbole D ,

— un opérateur (ou porte) logique OU est représenté par le symbole D .

Exemple : on considére le systeme représenté par ’arbre de défaillance suivant
(figure 6.1).

El

E2 E3

FIGURE 6.1 — Arbre de défaillance

Si p1, p2, p3 et p4 sont les probabilités des événements X1, X2, X3 et X4, la proba-
bilité de E2 vaut: e, =1—(1—-p;1)(1—p2). Cellede E3 vaut: e, = 1—(1—-p3)(1—pa).
La probabilité de E1 vaut: e; = e, e3.

Les probabilités p; sont en général les probabilités de défaillance d'un élément.
Comme plus haut, lorsque ces probabilités sont tres petites, on peut écrire :

ex=p1+py €t e3=p3+ps.

6.1.3 Coupes minimales

Une coupe est un ensemble d’éléments dont la panne entraine la panne du sys-
teme. Une coupe minimale est une coupe ne contenant aucune autre coupe. Une
coupe est un ensemble d’éléments intersectant chacun des chemins de succes.
La recherche des coupes minimales est d'un grand intérét pour I'étude de la fia-
bilité et de la disponibilité des systemes. En effet chaque coupe correspond a un
combinaison significative de pannes. Linterprétation des coupes minimales per-
met de repérer les points faibles du systeme, les fausses redondances, I'influence
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d’un élément donné sur la fiabilité du systeme.

Exemple : Dans le systeme représenté
par le diagramme de fiabilité ci-contre, <5>
il y a quatre coupes minimales : {1,3},

{2,4}, {3,5,2} et {1,5,4}.

Les coupes minimales peuvent étre déterminées automatiquement, soit a partir
du diagramme de fiabilité, soit a partir de I'arbre de défaillance.

Si on note C; (1 <i < m) les coupes minimales d'un systeme, on peut écrire 'in-
disponibilité A :

/_\:P(CJCi).

La probabilité P(C;) est égale au produit des indisponibilités de chaque élément
de la coupe Ci. Si ces quantités sont tres petites on peut écrire :

_ m
A=) P(Cy).
i=1

A l'aide de la formule de Poincaré il est possible d’obtenir une approximation
plus précise ou un encadrement.

Il est intéressant de se rendre compte de 'importance d'un élément particulier
dans la disponibilité d'un systeme. On vient de voir une méthode permettant de
calculer I'indisponibilité d'un systeme. Si on s’'intéresse a un élément i donné,
cette indisponibilité A est une fonction de I'indisponibilité A; de I'élément i. On
définit différents nombres qui rendent compte de I'influence de A; sur A. En voici
deux parmi tous ceux que I'on trouve dans la littérature :

— facteur d'importance marginale : ;’Tﬁ,
i

— facteur d’'importance critique : % S—é.
Lelogiciel ARBRE, concu par N. Limnios de 'U.T.C. de Compiegne, dessine I'arbre
de défaillance d’'un systeme, calcule la disponibilité du systeme en fonction de la

disponibilité des éléments de base, calcule des facteurs d'importance.
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6.2 Systemes markoviens

Lorsque les taux de défaillance et de réparation des éléments d'un systeme sont
constants et lorsque les temps de fonctionnement et de réparation de ces €élé-
ments sont indépendants, on peut représenter |’évolution du systéme par un pro-
cessus markovien de sauts (X;);>o a valeurs dans un espace fini formé des états
{1,2,...,n}.

Nous noterons A la matrice génératrice du processus et nous supposerons que
le processus est irréductible. Nous supposerons que les états {1,2,...,[} corres-
pondent a des états de fonctionnement du systeme et que les états {{ + 1,..., n}
correspondent a des états de panne du systeme.

On note P(t) la loi de la variable aléatoire X;, P*(s) la transformée de Laplace de
P(¢). Les équations de Kolmogorov pour le processus s’écrivent :

ap B)=PA
dr ’
ou apres transformation de Laplace :

sP*(s)=P(0) =P*(s)A,

dou:
P*(s) =P(0)(sI-A) L.

On a donc une expression explicite de P*(s). Il s’agit d'une formule théorique
qui n'est pas tres utilisable lorsque le nombre d’états est grand. 1l faut en effet
inverser la matrice (sI — A) et ensuite inverser la transformée de Laplace. Ceci
n’est possible a faire analytiquement que dans quelques systemes simples. Dans
un systeme complexe, on peut utiliser les techniques de résolution numérique
des équations différentielles pour trouver directement les solutions de I’équation
de Kolmogorov.

On sait que le processus se stabilise sur un état stationnaire décrit par une pro-
babilité m qui satisfait 'équation A = 0. Cette probabilité satisfait également la
relation :
7= lim P(r) =limsP”*(s).
t—o0 s—0

Pour calculer la fiabilité du systeme, on part d'un loi initiale P(0) qui ne charge
que les états de fonctionnement. On remplace le processus (X;);>o par le proces-
sus (Yy) =0 qui coincide avec X; tant que X; est dans un état de marche et qui
reste piégé dans un état de panne des que X; atteint un tel état. Ce processus est
également un processus markovien de saut. Sa matrice génératrice A’ s'obtient
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a partir de A en remplacant les lignes {/ + 1,...,n} de A par des lignes de 0. La
fiabilité et le MTTF du systeme peuvent s’écrire :

l oo
R(t)=) P(Y;=i) et MTTF:f R(t)dt =R"(0).
i=1 0

On peut écrire les équations de Kolmogorov pour le processus (Y;);>o et trou-
ver une expression explicite pour la transformée de Laplace R*(s) de la fiabilité.
La transformée de Laplace du vecteur formé des ! premieres composantes de
la loi de Y; s’écrit : Py ;(0) (sI; _Al,l)_l ou Py ;(0) représente les / premieres com-
posantes de P(0), A ; la matrice carrée d’ordre / correspondant aux / premieres
lignes et colonnes de A et I; la matrice identité d’ordre /. La transformée de La-
place de la fiabilité est la somme des / composantes de ce vecteur. On a alors en
notant 1; le vecteur colonne de dimension / formé de 1 :

MTTE = —P; ;(0) (A, )"} 1;.

On constate évidemment que le MTTF dépend de la loi initiale P; ;(0).

Lorsqu’au temps initial le systeme est dans un état de panne, on peut faire des
calculs semblables pour obtenir la maintenabilité etle MTTR : en notant P;.; ,,(0)
la loi initiale sur les états de panne, A;, , la matrice carrée d’ordre n — [ extraite
de la matrice A et formée des éléments de A sur les lignes et colonnes d’ordre
supérieur ou égalal+1et1,_;le vecteur colonne de dimension n —[ formé de 1,
on obtient :

MTTR = —P11,,(0) (Aps1,m) "' 1.

Nous allons maintenant chercher les nombres caractéristiques de I'état station-
naire MUT et MDT lorsqu'’il n'y a qu'un seul état de panne. Alors nous avons

évidemment : .

MTTR=MDT = —-
—-A(n,n)

Pour identifier le MUT, supposons que nous soyons en régime stationnaire et
qu'a l'instant 0 le systéme soit en panne. Alors, apres le premier instant de saut,
le processus se trouve dans I'état i (1 <i < n —1) avec la probabilité % . Le
MUT est alors le MTTF avec cette probabilité comme loi initiale :

n-1n-1 A(n, i) _1
MUT = Aj,_ 1, 7).
;;Am,n)( Ln-1)"" (0, J)

On peut évidemment faire le méme type de calculs lorsqu’il n'y a qu'un seul état
de fonctionnement.
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6.3 Systemes non markoviens

Dans ce paragraphe, nous allons voir comment ramener I"étude de certains sys-
temes non markoviens a I’étude de systemes markoviens.

6.3.1 Méthode des états fictifs

SiI'hypothese « taux de défaillance constant » est souvent raisonnable, il n’en est
pas de méme de I'hypothese « taux de réparation constant ». La loi du temps de
réparation n’est pas souvent une loi exponentielle. Si cette loi est la convoluée
de plusieurs lois exponentielles, on peut introduire des états fictifs pour rendre
markovien le processus décrivant le systeme. Ainsi lorsque le temps de saut de
I'état i a I'état j a comme loi la convoluée des lois exponentielles m; et my, on
introduit un état fictif k entre i et j; le systeme passe de i a k au bout d'un temps
de loi exponentielle m; et passe ensuite de k a j au bout d'un temps indépendant
de loi exponentielle m;.

On introduit ainsi autant d’états fictifs que nécessaires et on rend le processus
markovien. Cette méthode est en particulier possible lorsque les lois de répara-
tion sont des lois d’Erlang (loi de la somme de n variables aléatoires indépen-
dantes de méme loi exponentielle). Avec cette méthode en perspective, on peut
chercher a estimer les lois de panne et de réparation qui interviennent dans le
systeme comme des convoluées de deux lois (ou plus), exponentielles indépen-
dantes de parametres différents. Cette méthode a I'inconvénient d’introduire des
états en plus et de compliquer le graphe du systeme.

Exemple : Considérons un systeme formé d’un seul élément dont le taux de dé-
faillance est constant égal a A et le taux de réparation variable correspondant a un
temps de réparation de loi d’Erlang de parametres u et 2. On peut introduire un
état fictif entre I'état de marche et I'état de panne. Le processus décrivant alors
le systeme est a 3 états : état 1 pour le systeme en fonctionnement, état 2 pour le
systeme en panne, état 3 pour I’état de panne fictif supplémentaire. Le processus
markovien de sauts correspondant admet alors comme matrice :

-A X 0
A=l 0 —p p
Ho 0 -p

Si on suppose que le systeme est en état de marche a I'instant initial, en écrivant
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les équations de Kolmogorov et en prenant la transformée de Laplace, on trouve :

(s+A) PD*) - v P)*(s) = 1
“A (PD¥) + (s+p) P*s) = 0
- P(s) + (s+p @P3)*(s) = 0
d’ou
fo (s+W?
(Pr)(s) = S(s2+sA+2u) + P2 +2Ap’
(P)*(s) = A+
2 Cos(sZH SN+ 20) + 2+ 2Ap
()" (s) = A :
5 Cs(s24+ SN+ 20) + p2 + 2\

La transformée de Laplace de la disponibilité vaut (P;)*(s) et celle de 'indisponi-
bilité vaut (P2)* (s) + (P3)* (s). On retrouve la formule déja vue pour I'indisponibi-
lité limite :

p .

+2A

A(+o0) = lil%s (P (s) =
S—

6.3.2 Méthode des variables complémentaires

Supposons que I'évolution du systeme soit décrite par un processus de sauts
(Xy)r=0 a valeurs dans E tel que les temps de séjour dans les différents états du
systeme soient des variables aléatoires non exponentielles. Ce processus n’est
pas markovien. Cependant si au moment d'un saut la loi de saut ne dépend que
de I'état du systeme a cet instant et si la loi du temps de séjour dans le nouvel
état ne dépend que de cet état on a affaire a un processus semi-markovien. Si
on introduit la variable aléatoire U, représentant le temps passé par le proces-
sus dans I'état ou il est a I'instant t, le processus (X;,U;);>¢ est markovien. Mais
c’est un processus a valeurs dans E x R;.. Cet espace n’est plus dénombrable et
le processus (X¢,U;);>o n'est pas un processus de sauts. C’est un processus de
Markov plus compliqué. 1l satisfait également des équations de Kolmogorov qui,
traduites dans ce cadre, donnent des équations aux dérivées partielles pour la
densité du couple (X;, U;).

Exemple : Considérons un élément de taux de défaillance constant A et de taux
de réparation variable égal a p(.). Ce systeme est décrit par le processus de sauts
(X)r=0 qui vaut 1 lorsque le systeme fonctionne et 0 lorsqu’il est en panne. On
note g(.) la densité de la loi du temps de réparation et P, (¢) la probabilité que le

72



6.3. Systéemes non markoviens

systeme soit en fonctionnement au temps ¢. On considere également p,(¢,x) la
densité de U, lorsque le systeme est en panne au temps ¢ :

VAboréliendeR,, PX;=2,U;€eA)= prg(t,x) dx.
On peut alors écrire les équations :
Pi(t+At) =P1(t) (1 - AAD) + Atfpg(t,x)p(x) dx +o(At)
p2(t+At,x +At) = pa(t,x) (1 — u(x)AL) + 0(AD),
ce qui donne en divisant par At en faisant tendre Af vers 0 :

dP
d—tl(t) = —)\Pl(t)+fpz(t,x)u(x) dx

opz

6,0+ 2P (£, x) = — (o) pa(t, 1)
ar P ‘

avec les conditions limites :

P;(0) =1, pa2(t,x)=0six>t, p2(t,0) = APy(2).

On peut résoudre numériquement ces équations. On peut aussi donner un solu-
tion explicite a I'aide des transformées de Laplace. On prend les transformées de
Laplace en ¢ dans les équations ci-dessus et on trouve :

sPD () —1==A(P)*(s) +f(pz)*(s,x)u(x) dx
o(p2)*
0x

s(p2)* (s, x) + (5,%) = —ux)(p2)* (s, x).

La résolution de I'équation différentielle ci-dessus donne :

(p2)*(5,x) =A(P1)*(s) eXp(—sx —fo t(x) dx).

d’ou

P1)"(s) = r)\g*(s)

On retrouve la formule vue au chapitre précédent. Il reste évidemment a inverser
la transformée de Laplace.

Cette méthode s’applique au cas général d'un systeme décrit par un processus
de sauts semi-markovien lorsqu’il n'y a pas de transition possible entre les états
de panne et lorsque I'état initial est un état de fonctionnement.
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Transformation de Laplace

Le tableau suivant donne les transformées de Laplace

+00
xqﬂw=ﬂn:/' e f(H)dt (s€C)
0

de quelques fonctions f usuelles nulles sur R_.

Rappel : dérivation et convolution

L(fH=sZL()-f0)

Original f () | Image F(s) | Conditions
1
e 4 _— a€eR
s+a
n!
t"e — _|laeRneN
(S+6l)”+1
T'(a+1
¢ Ia+1) aeRa>-1
Sa+1
coswt il weR
$2+ w?
. )
SInwt m weR
o 'rE) (Ao
A A
f(t—a) e “F(s) |a>0
e ‘' f(r) F(s+a) |aeC
et

L =2 2L@)
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